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Resumo

A ciência é uma atividade colaborativa. As descobertas que alcançamos hoje só são pos-
síveis devido ao conhecimento acumulado construído por várias gerações de cientistas.
Também é possível observar que a maneira como os cientistas fazem pesquisa mudou com
os avanços tecnológicos, tornando-se cada vez mais baseada em computadores (experi-
mentos in virtuo e in silico). Além disso, a colaboração na pesquisa científica aumentou
com o tempo, com equipes (cada vez maiores) ao invés de indivíduos conduzindo as
pesquisas científicas. Essas novas maneiras de fazer pesquisa exigem apoio de ferramentas
adequadas para ajudar a atribuir o crédito correto aos cientistas que trabalharam no ex-
perimento; identificar colaborações implícitas (quando um cientista usa dados produzidos
por outro experimento); e coletar e consolidar dados experimentais gerados por difer-
entes usuários e dispositivos. Sistemas de Gerência de Workflows e ferramentas baseadas
em script (ambas com suporte a coleta de proveniência) têm sido maneiras populares de
executar experimentos in silico. No entanto, essas ferramentas frequentemente negligen-
ciam o aspecto de colaboração. Mesmo soluções que visam experimentos colaborativos
nem sempre atendem às necessidades dos cientistas. A literatura mostra pesquisas que
discutem assuntos relacionados a experimentos in silico. No entanto, elas se concen-
tram na coleta de proveniência em suas aplicações, tratando assim a colaboração apenas
como outra aplicação possível, ou se concentram nos Sistemas de Gerência de Work-
flows, apenas listando a colaboração como um possível desafio. Assim, como primeira
etapa desta dissertação, levantamos as ferramentas e abordagens disponíveis que visam
auxiliar os cientistas a conduzir experimentos in silico colaborativos. Particularmente,
nos concentramos nos desafios relacionados à proveniência desses experimentos colabora-
tivos. Elaboramos uma taxonomia com os aspectos da colaboração na pesquisa científica
e discutimos cada um desses aspectos. Também identificamos lacunas na literatura que
fornecem oportunidades futuras. Em seguida, trabalhamos para preencher uma das lacu-
nas identificadas: a falta de apoio à colaboração em ferramentas baseadas em script com
reconhecimento de proveniência. Para isso, propomos uma abordagem colaborativa para
este tipo de ferramenta, que foi implementada no noWorkflow. Algumas das capacidades
colaborativas que adicionamos ao noWorkflow foram: compartilhamento de ensaios exe-
cutados entre cientistas, fornecendo assim um único banco de dados de proveniência que
representa todo o experimento; criando o conceito de "Experimento" no banco de dados
de proveniência, permitindo assim que os cientistas tenham múltiplos experimentos em
um único banco de dados de proveniência; e enriquecendo a colaboração no contexto de
diferentes experimentos. Apresentamos também os resultados de um estudo de caso que
realizamos, e que ajuda a entender como a abordagem proposta aumenta a colaboração e
a produtividade, além de enriquecer as informações de proveniência coletadas.

Palavras-chave: proveniência, colaboração, eScience, experimentos in silico.



Abstract

Science is a collaborative activity. The findings we achieve today are only possible due
to accumulated knowledge constructed by several generations of scientists. In addition,
the way scientists do science has changed with technological advances: it has increasingly
become computer-based (in virtuo and in silico experiments). Moreover, collaboration in
science has increased over time, with teams instead of individuals conducting more and
more scientific research and teams growing in size. These new ways of doing research
demand proper tooling support to help with attributing the correct credit to the scien-
tists who worked on the experiment; identifying implicit collaborations (when a scientist
uses data produced by another experiment); and collecting and consolidating experiment
data generated by different users and devices. Provenance-aware Workflow Management
Systems and Script-based Systems have been popular ways of running in silico experi-
ments, but these tools often neglect the collaboration aspect. Even solutions that aim
at collaborative experiments do not always address the collaborators’ needs. The liter-
ature shows surveys discussing subjects related to in silico experiments. However, they
either focus on provenance collection and applications, thus treating collaboration as just
another possible application, or focus on Workflow Management Systems, only listing
collaboration as a possible challenge. So as the first step of this dissertation we survey
available tools and approaches that aim at aiding scientists to conduct collaborative in
silico experiments. Particularly, we focus on challenges related to the provenance of these
collaborative experiments. We devise a taxonomy with the aspects of collaboration in
scientific research and discuss each of these aspects. We also identify literature gaps that
provide future opportunities. We then work to fill in one of the identified gaps: lack of
support of collaboration on provenance-aware Script-based systems tools. For that, we
propose a collaborative approach to this kind of tool and implement it on top of noWork-
flow. Some of the collaborative capabilities we add are: sharing executed trials among
scientists, thus providing a single provenance database representing the whole experiment;
creating the concept of "Experiment" in the provenance storage, thus allowing scientists
to have multiple experiments in a single provenance storage; and enriching collaboration
in the context of different experiments. We also present the results of a validation case
study that we conducted, which helps to understand how the proposed approach increases
collaboration and productivity, besides enriching the collected provenance information.

Keywords: provenance, collaboration, eScience, in silico experiments.
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Chapter 1

Introduction

Science, as we know, is a result of centuries of hard work. Several civilizations and people

contributed to the accumulated knowledge we have today. Although it is common that

a single "genius" receives credit for some advances, the truth is that, in general, these

"geniuses" used information that was only possible due to the effort of other people to

acquire and document it [75, 11]. Thus, science is a collaborative activity of humankind.

Scientific knowledge is built incrementally and cumulatively. To discover something

new, scientists have to extensively study their fields to understand the current state of

the art. Additionally, an important part of the scientific process is the communication

of the work done and the outcomes reached, which allows the scientific community to

analyze and review other scientist’s research and the obtained results. This process is

essential because it allows other people to double-check the ideas, find flaws, or reproduce

the achieved results, besides enabling the use of acquired knowledge in future discoveries

[13].

"Scientific collaboration can be defined as interaction taking place within a social

context among two or more scientists that facilitates the sharing of meaning and com-

pletion of tasks with respect to a mutually shared, super-ordinate goal" [76]. Therefore,

scientific collaboration occurs not only after the publication but especially in ongoing re-

search. This collaboration can occur in different intensities, reflected in publications with

multiple authors or acknowledgements to other researchers. Indeed, collaboration is often

encouraged and even required by research funding agencies [76].

Wuchty, Jones, and Uzzi [95] analyze almost 20 million publications from the mid-50s

to the early 21st century, and conclude that the production of publications by teams of

collaborators has increased over time and that these teams have grown in size. Also, the
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authors conclude that publications produced in teams usually receive more citations on

average than publications made by a single author, even when self-citations are ignored

[95].

At the same time, computer technology has advanced hugely. Computers have become

cheaper and more accessible, and computer networks have spread all around the world.

This movement produced two direct effects: (i) it allowed collaboration to occur not just

between people nearby but also between people located all around the world; and (ii) it

increased the number of scientific experiments conducted in silico.

In silico experiments are those that are totally executed on the computer. In such

experiments, both the execution and observation environments are entirely composed of

computational models [84]. They usually require much more support from data manage-

ment tools and software engineering when compared to traditional experiments [84]. In

this dissertation, we are particularly interested in this kind of experiment since they have

been increasingly adopted by the scientific community and pose new challenges in terms

of collaboration, such as: attributing the correct credit to the scientists who worked on

the experiment; identifying implicit collaborations (when a scientist uses data produced

by another experiment); and collecting and consolidating experiment data generated by

different users and devices [77, 2].

In silico experiments typically demand more support from data management and

software engineering tools when compared to other experiment classes (in vivo, in vitro,

and in virtuo) [85]. Workflow Management Systems [3, 33, 96, 42] and Script-based

systems [21, 48, 59] have been popular ways of running such experiments. Of course, this

is a simplification and this classification may present variations between authors and can

also be fine-grained depending on the subject of the analysis. Mölder F, Jablonski KP,

Letcher B et al. [55] classified workflow systems in 5 categories: (1) workflow management

systems that offers and demands users to use graphical user interfaces for composition

and execution of workflows [33, 42] (this is the kind of tool we are classifying as Workflow

Management Systems); (2) systems like Ruffus [38], where workflows are specified using a

library of classes and functions for generic programming languages; (3) some systems like

Snakemake [55] and Nextflow [27] where workflows are specified using a domain specific

language (DSL) [55]; (4) a category which very similar to the third one but instead of

specifying the workflow using a DSL it uses configuration file formats like YAML [10]; (5)

systems based on generic workflow specification languages like CWL [6] and WDL [89].

These workflow specifications are system-independent and can be executed by multiple
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tools, e.g. Cromwell [6], Toil [88]. In our classification, category (1) is considered Workflow

Management Systems while categories (2), (3), (4), and (5) are considered Script-based

systems, plus another category that is not well covered by Mölder F, Jablonski KP, Letcher

B et al [55], in which we fit systems for generic programming languages that do not need

a previous workflow definition, like noWorkflow [59]. Regardless of the classification we

use for those systems, collaboration is still one of the challenges in the area [20, 34, 41].

The data related to in silico experiments are not limited to the results of the ex-

periment but also include the logical sequence of performed activities; parameters used;

intermediary results of activities; information about the execution environment; etc. [32].

It is common for these data to be collected and stored in a provenance database. Prove-

nance is a broad concept that can be applied in many disciplines and is usually linked to

the origin of an object or data. It can be seen as a set of metadata that describes not only

the object or data itself but also the activities applied in its production process. Bring-

ing the concept into scientific research, it refers to information on how the experiment

was performed and how the research results were recorded [41]. This should also include

records of how the collaboration was conducted.

Provenance gathering is a common feature in many tools [3, 21, 33, 41, 48, 59, 96, 4].

However, when focusing on collaborative experiments, two challenges emerge: (C1) how to

collect provenance in a collaborative experiment (this comprises collecting provenance of

actions of scientists that may be working in different parts of the experiment or different

geographical locations and machines); and (C2) how provenance can be used to make

collaboration easier in this environment.

As a first step of this dissertation, we map the state-of-the-art approaches and provenance-

aware models that are available to conduct in silico collaborative experiments. We aim at

investigating how they address challenges C1 and C2. To do so, we answer the following

research questions: (R1) How do existing tools store and collect provenance in a collab-

orative experiment?; (R2) How do existing tools use provenance to make collaboration

easier in scientific experiments?. The research questions R1 and R2 are respectively linked

to challenges C1 and C2.

As a result of this survey we propose a taxonomy and use it to classify the existing tools

and discuss opportunities based on the gaps we identified. These opportunities and gaps

are used as a starting point to our collaborative approach to script-based experiments.

What we found in our survey is that although some authors (e.g. [99, 33, 29]) deal

with provenance aware tools to the design and analysis of experiments collaboratively,
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they are based on workflow management systems, ignoring the fact that many scientists

use scripts in their experiments [66]. When looking at provenance aware script-based

solutions, collaboration support is still quite limited. Another option could be the use

of regular software development tools, such as version control systems, to collaborate

and execute the experiment, but these tools typically do not address specific problems of

scientific research such as provenance gathering. This survey is detailed on Chapter 2.

An earlier version of it was also published in SIGMOD Record [44].

Although this survey showed that there is a gap in script-based solutions, we wanted to

quantify the relevance of this gap to the scientific community, so we made a questionnaire

with researchers. This questionnaire showed that the vast majority of respondents work

in teams and prefer to use script-based solutions rather than workflows, even though the

limitations we already found. The questionnaire also showed that 52% of the respondents

face problems in collaboration with other scientists and 68% face problems to reproduce

collaborators’ work. Although the limited number of respondents, these data helped to

show the importance of a provenance-aware script-based approach for collaborative in

silico experiments. We detail this questionnaire and other insights we found in Appendix

A.

To fill the gaps we identified in our survey, this work proposes a provenance aware

approach that assists scientists in conducting in silico collaborative experiments. For this,

we take advantage of existing research on conducting experiments that are materialized in

the form of scripts. Among the existing approaches, we chose noWorkflow [59, 68], a tool

that allows capturing the provenance of Python scripts. The choice was made because

noWorkflow allows capturing provenance transparently, in different levels of granular-

ity, and is Open Source1. We extend noWorkflow by adding collaborative capabilities

such as: sharing executed trials between scientists, thus providing a single provenance

database representing the whole experiment; and creating the concept of "Experiment"

in the provenance storage, thus allowing scientists to have multiple experiments in a single

provenance storage. We provide further details of noWorkflow in Chapter 3.

To evaluate our approach, we conducted a case study. We built a simulated scenario

for using our approach in a fictitious research institute that performs multiple collaborative

research about COVID-19. The experiment aims at evaluating how our proposed approach

could increase the productivity and fluidity of the conducted research. We contrast our

approach in this scenario with the alternative of using the original version of noWorkflow
1https://github.com/gems-uff/noworkflow

https://github.com/gems-uff/noworkflow
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as a baseline. The results showed that our approach allowed scientists to answer questions

about the experiment that were not possible when using noWorkflow’s original version

and also provided a considerable gain of productivity in collaborative scenarios.

The dissertation proceeds as follows: Chapter 2 presents our survey, including: an

analysis of the existing provenance models that aim to precisely represent collaborative

research; a proposed taxonomy to capture the aspects that may influence collaboration

in the scientific research scenario; a discussion of publications and opportunities in the

field. Chapter 3 presents a summary of noWorkflow and its gaps regarding collaboration.

Chapter 4 presents our approach to enable collaboration in scientific experiments. It also

brings the implementation details of that approach on noWorkflow. Chapter 5 details the

case study that we conducted and results obtained. Finally, Chapter 6 presents some final

considerations and establishes some possibilities of future work.



Chapter 2

Provenance in Collaborative in Silico Sci-
entific Research

To answer the research questions (R1) How do existing tools store and collect prove-

nance in a collaborative experiment?; (R2) How do existing tools use provenance to make

collaboration easier in scientific experiments?; we made a snowballing [37] based survey.

We evaluate 170 publications and select 20 approaches and 7 surveys. To be selected,

an approach has to satisfy the following criteria: (i) has collaboration as a focus (i.e.,

the problem to be solved or the subject of a survey); or (ii) has provenance as a focus

while discussing collaboration features; and (iii) is in the context of in silico scientific

experiments. The surveys are used to reinforce this work’s motivation and as a bench-

mark. From the 20 selected approaches, 15 are tools for collaborative experiments, 2 are

provenance-aware data models for collaborative experiments, and 3 approaches present

both a tool and a provenance-aware data model for collaborative experiments.

Although there are some existing surveys on related topics [9, 20, 34, 41, 49, 71, 95]

they do not cover all the aspects that we are interested in. Our survey differs from Lu

and Zhang’s work [49] and Belloum et al. [9] by bringing a more detailed and up-to-

date view of the work in the area. Besides that, Belloum et al. discuss the challenges

to support e-science collaborative experiments with a closer look at the experiment life

cycle, but it only addresses the tools provided by the VL-e project. Wuchty et al. [95] aim

to demonstrate that teams have been increasingly dominating the scientific research in

the production of knowledge, without addressing available tools and research that helps

the execution of this type of experiment. On the other hand, Davidson and Freire [20]

and Gil et al. [34] focus on the challenges and opportunities existing in the Workflow

Management Systems research, without detailing the available tools. Other publications

focus on provenance collection and its applications, and collaboration merely appears as
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one of the possible applications of provenance [41, 71]. As opposed to that, our survey

focuses on provenance-related aspects of collaboration.

This chapter is organized as follows. On Section 2.1 we analyze the existing prove-

nance models that aim to precisely represent collaborative research. Section 2.2 discusses

some aspects of collaborative research and proposes a taxonomy to capture the aspects

that may influence collaboration in the scientific research scenario. Section 2.3 discusses

publications and opportunities in the field. We also classify the tools for collaborative

experiments covered by the survey in this taxonomy.

2.1 Provenance Models

Provenance is a broad concept and can be seen from different perspectives. Ragan et al.

[71] classify provenance in five types: Data provenance (the history of changes and move-

ment of data); Visualization provenance (the history of graphic views and visualization

states); Interaction provenance (the history of user interaction with a system); Insight

provenance (the history of cognitive outcomes and information derived from the analy-

sis process); and Rationale provenance (the history of reasoning and intentions behind

decisions, hypotheses, and interactions) [71].

Collaboration brings additional challenges in collecting and storing provenance. The

first challenge (C1) resides in how to collect provenance in a collaborative experiment. It

involves collecting data, interaction, and visualization provenance from multiple devices

since scientists collaborating could be working on different machines. Some initiatives

capture provenance from multiple devices [22, 25, 92], but they usually focus on high-

performance settings, where a single user executes an experiment on a distributed man-

ner, with parts of the trial being executed in a cloud, cluster, or a grid. This is different

from having several scientists executing different trials on different devices. Collecting this

provenance could be useful in several situations, such as giving credit to those involved

in the research [41], auditing the research, enabling the reproducibility of the experiment

and providing relevant information that allows each member of a group to better under-

stand the actions of other members in the context of a collaborative scientific experiment.

Another challenge (C2) resides in how to use this provenance to make collaboration easier

in a collaborative environment.

The first step to overcoming these challenges is providing a provenance model that

can properly represent the research collaboration aspects. This model needs to represent
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Figure 12: The entities and edges in the standard OPM model are extended by Workflow (WF) entity, and wasPublishedBy and 

wasExecutedIn edges in the collaborative provenance model 

 
 
Figure 13: An abstract model of collaborative provenance nodes and dependencies using the extended open provenance model 
 
 

If process p1 wasControlledBy agent a1, and workflow w1 
wasPublishedBy agent a2 and wasExecutedIn p1, then we 
can infer that a1 hasWFCollaborationWith a2. 
If process p1 wasControlledBy agent a1 and used artifact 
A1 that wasPublishedBy agent a2, then we can infer that a1 
hasDataCollaborationWith a2. 

 
If process p1 wasControlledBy agent a1 and used artifact A1 that 

wasGeneratedBy process p2 that wasControlledBy 
agent a2, then we can infer that a1 hasRunCollaborationWith 
a2. 

 
7 Related Work 

 
 To help with the understanding of the presented ideas, we 
review some of the related work in this section.  To the best of 

Figure 2.1: An abstract model of collaborative provenance nodes and dependencies using
the extended Open Provenance Model [2]

four main aspects [49]: (i) Distribution (D) – Collaboration typically involves resources

from multiple organizations; (ii) Heterogeneity (H) – Provenance produced by different

workflows may have different formats. Even those that conform to the same schema may

evolve during the experiment life cycle; (iii) Multilevel (M) – Experiments usually have

complex tasks that are modeled hierarchically (e.g., using sub-workflows, or by functions

calling functions in a script). Although this is not a specificity of collaborative experi-

ments, the provenance model should store this hierarchy; (iv) Collaboration (C) – The

model must support new user iterations and collaboration standards, besides storing infor-

mation about these collaborations. The term collaborative workflow has been used with

multiple meanings in the literature. It is understood both as the collaboration between

workflows or the collaboration between workflow users [49]. Collaboration between work-

flow users is the direct collaboration of users in the context of a scientific workflow. On the

other hand, a collaboration between workflows refers to the indirect use of data produced

by another workflow. This suggests an implicit collaboration, when collaboration occurs

through the data published by another researcher.

Altintas et al. [1, 2] propose the provenance model shown in Figure 2.1, which is

capable of capturing implicit collaborations within a scientific experiment. The model

identifies workflows dependency from the relations between the dataflows input and out-

put, and also helps to identify contributions from users who collaborate on a project

based on records of past executions. The authors extend OPM (Open Provenance Model)
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Figure 2.2: Collaborative Provenance Model (CPM) [97]

[56] to record user interactions when publishing data and workflows, which is essential

for identifying the various types of user collaboration. This model explicitly represents

collaboration amongst users (agents ui in the figure) and which users were responsible for

each run of the experiment (ri in the figure). According to Ragan et al.’s classification

[71], it captures data and interaction provenance. The approach also proposes a query

language, which is an extension of the QLP (Query Language for Provenance) [7].

Missier et al. [54] propose a model that facilitates the sharing of provenance in

collaborative environments. The model aims to provide end-to-end support for implicit

collaborations. The approach treats sharing as an action from which provenance has to

be preserved, i.e., the focus is to register the provenance of the data sharing process.

To do so, the model adds new information to provenance traces, stitching common parts

of those traces. With this, the model can represent cases when scientists use data that

was produced by another scientist’s workflow, even when they come from heterogeneous

workflow systems. This model can represent data and interaction provenance [71].

Zhang et al. [97], Confucius [99], and ProvDB [52] present provenance models and

tools that track collaboration provenance. Zhang et al. [97] propose the Collaborative

Provenance Model (CPM), which is an extension of PROV-DM (PROV Data Model)

[57]. Figure 2.2 shows that the model explicitly represents Person and Group of Person

(a collaborating group), besides versions of Workflow, Processor, and Data Links. It

also captures which user operates which workflow version, process version, and data link

version. The model captures data and interaction provenance [71].

Confucius [99] introduces a provenance ontology (Figure 2.3). The ontology aims at

supporting the capture and record of scientific workflow composition and user interactions

during the process of a collaborative workflow composition. The provenance is stored in
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a provenance repository on the central node of Confucius. Note that the ontology can

represent workflows and their components, and roles of people in the collaboration groups.

As for Ragan et al.’s classification [71], this model can represent data and interaction

provenance, besides the remaining types through annotations.

ProvDB [52] proposes a provenance model with a schema-later approach, providing

a base schema that can be extended by arbitrary properties as key-value pairs (Figure

2.4). These values can be complex, such as a JSON document. Information to fill in the

base schema is collected through Git and the built-in ingestors. Additional information

can be added through custom ingestors or by user’s annotations. When the user runs a

command using ProvDB, the system verifies the registered ingestors and executes them.

The ingestors can analyze the before- and after-state of the artifacts produced by the

command to generate provenance information about the executed command. The model

deals with data and interaction provenance [71] and can deal with all other types of

provenance using the ingestors.

Table 2.1 summarizes how each model supports the collaboration aspects mentioned at

the beginning of this section. All the models present limitations when representing some

aspects of collaboration. Altintas et al. [1, 2] present a model that is capable of capturing

user collaborations but lacks support for the other analyzed items. Confucius [99] and

CPM [97] do not adequately treat the heterogeneity of collaboration, since they are not

able to deal with different workflow formats. Confucius also does not deal with workflow
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Table 2.1: Summary of the collaborative provenance models

Provenance Model Provenance Types [71] Aspects of Collaborative Research*
D H M C

Altintas et al. [1, 2] Data; Interaction No No No Yes
CPM [97] Data; Interaction Yes Evolution Only Yes Yes
Missier et al. [54] Data; Interaction Yes Different schema only No Yes
Confucius [50, 86, 96, 99] All** Yes No Yes Yes
ProvDB [52] All** Yes** Yes** Yes** Yes

* (D) Distribution (H) Heterogeneity (M) Multilevel (C) Collaboration
**Modeled as extended properties

evolution. Missier et al.’s model [54] present limitations in dealing with workflow evolution

and representing the multilevel hierarchy. ProvDB [52] is the only model that provides

support for all the analyzed aspects, but it does that making use of extended properties

in a key-value schema. Regarding Ragan et al.’s [71] classification, only Confucius and

ProvDB can capture all types of provenance, but they do that by using annotations

or extended properties. This kind of schema could make things hard and inefficient to

query. Another important aspect is that the models just provide a form of storing the

information generated in collaborative research and do not necessarily provide a way of

collecting them. We also notice that the models supported by a tool [52, 97, 99] can store

some provenance on collaboration, but the tool may not fully capture it.

In this section, we show several provenance models that are able to store in part (or
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Figure 2.5: Taxonomy of collaboration in scientific research

in total) collaboration aspects of scientific experiments. However, in order to properly

answer our two research questions, we need more insights. In the next section, we discuss

how the existing approaches capture and use this information to foster collaboration.

2.2 Collaboration in Scientific Research

Scientific research is a complex activity per se, and collaboration in this environment

becomes a challenging task. To better understand these challenges, we independently

analyze the aspects that may influence collaboration in the scientific research scenario. We

develop a taxonomy (Figure 2.5) by examining the 20 approaches we selected, capturing,

and categorizing their similarities and differences. We then standardize and enrich the

categorization based on other publications [52, 70, 73].

The first branch of the taxonomy is Experiment Phases, which is defined in different

ways by different authors [9, 52]. In this survey, we use the classification proposed by

Mattoso et al. [51] and illustrated on Figure 2.6, where scientific experiments go through

three phases: composition, execution, and analysis. During composition, scientists struc-

ture and configure the entire experiment, establishing the logical sequence of activities,

the type of input data to be provided, and the type of output data. During execution, sci-

entists materialize the experiment, define the required input data to run the experiment,

trigger its execution, and get the results to be analyzed. During analysis, scientists study

the gathered data from prior phases [51] aiming at proving or refuting their hypothesis.

Each of these experiment phases may involve different forms of collaboration, as discussed

in Section 2.2.1. Provenance plays an important role in each phase, so it is important to

keep track of all the user interaction and data transformations on a provenance database.

The second branch of the taxonomy regards the temporal aspect of collaboration.
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 Towards supporting the life cycle of large scale scientific experiments 83 

experiment life period. The idea of representing a life cycle 
as a model is exhaustively used in other domains, such as 
software engineering to represent the software development 
life cycle (Pressman, 2004). There are several models for 
such experiment life cycles, each one describing different 
approaches. 

Our model for the experiment life cycle has three 
phases: composition, execution and analysis, briefly 
described at the introduction and detailed on Section 3. This 
subsection details some of the existing approaches to model 
experiment life cycles and their particularities. 

Livny et al. (1994) propose a life cycle based on a 
generic definition for experimental studies. By generic the 
authors mean that the proposed experiment life cycle may 
be applied to most of the experimental studies usually 
executed. They recognise that scale and scope of an 
experimental study is determined by the ability of a given 
research team to manage and generate the ever increasing 
amount of data. Thus, they focus their work on the data 
management of desktop experiments. However, their view 
of an experiment is strongly related to the workflow ready 
to be executed and the management of execution data. 
According to our life cycle proposal, the life cycle of Livny 
et al. (1994) is restricted to supporting the execution phase. 
It presents a workflow design step that is close to the 
execution, rather than a high level view of the experiment 
based on models and algorithms, for example. 

The myGrid project (Goble et al., 2003) is one of the 
first works to define a scientific experiment life cycle. Their 
proposal has six phases: construction, discovery, 
personalisation, execution and management. In Goble et al. 
(2003) and Stevens et al. (2003) the authors draw attention 
to requirements and challenges of supporting this life cycle. 
However, their concept of an experiment is still close to the 
executable workflow. Thus, during the construction, 
discovery and personalisation phases, the scientist is guided 
to finding executable services and resources. In Goble et al. 
(2003) the myGrid team proposes the use of ontologies to 
add semantics to bioinformatics workflows, but they do not 
show how or the role of ontologies in their experiment life 
cycle. 

Bose and Frew (2005) present a variation of the life 
cycle proposed by Livny et al. (1994) and highlight the 
importance of prospective lineage data of scientific 
experiments. Despite its contribution, it presents the same 
limitation of the life cycle proposed by Livny et al., and 
Bose and Frew do not make explicit the distinction between 
the workflow and the scientific experiment. Thus it only 
details the workflow execution phase. 

Oinn et al. (2007) propose a life cycle based on the work 
of Bose and Frew (2005), adding two new steps: sharing 
and reuse. These steps are focused on making the entire 
experiment public, so it may be reused by other scientists. 
These two new steps correspond to part of our view of the 
composition phase of the experiment. This life cycle adds 
more semantic to the workflow definition. However, they 
also present the concepts of workflow and the scientific 
experiments interchangeably. Thus, an experiment that has 

several workflow instances as trials are not explicitly 
represented. 

All of these life cycles focus on a similar perspective. 
They do not share our view of two different concepts, i.e., 
the experiment as a high level definition and the workflow 
as one of the instances of the experiment trial. 
Consequently, the scientist cannot choose between working 
in the experiment on a high level of abstraction and its 
corresponding workflow execution. Queries like the ones 
presented at the Introduction remain unanswered. We 
believe that the first step towards this support is to present 
the life cycle and its challenges. Section 3 presents our 
approach to model a large scale scientific experiment life 
cycle. 

3 Our model of a scientific experiment life cycle 

In this section we introduce our model of a scientific 
experiment life cycle. Figure 1 presents the large scale 
scientific experiment life cycle, which essentially consists 
of multiple loops traversed by the scientist several times in 
the course of a scientific experiment. In Figure 1, the major 
phases may be identified: composition, execution and 
analysis. Each phase has an independent cycle, taking place 
at distinct moments of the experiment and handling explicit 
provenance metadata. 

Figure 1 The proposed scientific experiment life cycle 
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The composition phase is responsible for structuring and 
setting up the whole experiment, establishing the logical 
sequence of activities, the type of input data and parameters 
that should be provided, and the type of output data that are 
generated. All this information is related to the prospective 
provenance. This phase may be further decomposed in  
two sub-phases: conception and reuse. The conception  
sub-phase is responsible for setting up the experiment. 
During conception the goal is to capture the abstract 
workflow, which is a representation of the scientific 
experiment protocol. Additionally, during conception, it is 
possible to setup a concrete workflow, which is obtained 
through the derivation of the abstract workflow. The reuse 

Figure 2.6: Experiments life cycle [51]

This aspect is related to the experience of time and the temporal organization of activities

[73]. In a collaborative environment, some tasks need to be synchronized, while others

can be done asynchronously. Section 2.2.2 analyzes if and how existing approaches allow

collaborative tasks to occur in real-time or asynchronously.

The third branch is concurrency control, which has been extensively studied in the

context of databases [72, 19, 30], operating systems [82], and software development [79, 78,

61]. Although the conduction of scientific experiments has its peculiarities, the taxonomy

uses ideas that govern version control systems once the problems that may arise when

accessing a resource during an experiment resembles the ones that are dealt with by such

systems. There are two main concurrency control policies to allow simultaneous work on

version control systems: optimistic and pessimistic policy [70]. In pessimistic policies, the

artifact that needs to be accessed by several users is restricted to be changed by a single

user at a time (i.e., the artifact is locked to a specific user and is only released when

the interaction is finished). In optimistic policies, artifacts can be updated in parallel,

and users need to merge the changes when conflicts occur. Each of these policies has

advantages and disadvantages, and the choice of the most appropriate policy depends

on the concurrency frequency, as well as the effort required to merge the artifacts [70].

Section 2.2.3 discusses how existing approaches deal with concurrency control.

The fourth branch of the taxonomy regards the sharing of conceived ideas as well as

results and experiments. This allows other researchers to develop new research using these

ideas [13]. Although this process is practically mandatory in research, there is a consider-

able variation in what is shared, which may facilitate or hinder the research reuse. There is

indeed some initiatives like the "FAIR Guiding Principles for scientific data management
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and stewardship" [93] that provides guidelines to increase the Findability, Accessibility,

Interoperability, and Reuse of datasets. FAIR establishes that other important aspect is

that not only humans should have the capacity to interact with the shared data, but also

the computational systems should have the ability to find, access, interoperate, and reuse

data. Some forms of sharing within research would be knowledge sharing, as in publica-

tions; data and models sharing, such as sharing a database obtained after some research;

and physical resources sharing, such as what happens in the case of institutions sharing

a supercomputer. For these different types of sharing (in particular, knowledge, data, or

models) to succeed, provenance data is crucial. Without it, the shared information comes

out of context and may be useless. Section 2.2.4 evaluates which of these sharing forms

the existing approaches are prepared to deal with, and how this occurs.

Note that all branches of this taxonomy are connected to challenges C1 and C2. They

need to be taken into consideration both when collecting provenance (C1) and using this

provenance to make collaboration easier (C2). Note also that all branches of the taxonomy

are related to data and interaction provenance [71].

Table 2.2 presents the selected approaches and classifies them according to our tax-

onomy. This classification considers the aspects addressed in each approach and not the

solution maturity of a specific aspect. Thus, two solutions can be equivalently classified,

but this does not mean they have the same robustness level. We also evaluated if these

tools collect provenance and, whenever possible, classify which type of provenance these

tools support. On the next subsections, we detail each of the taxonomy branches and

how the surveyed approaches fit them, besides briefly discussing the provenance support

of those tools.

2.2.1 Experiment Phases

Most of the approaches tackle collaboration in the composition phase, while the execution

and analysis phases have been receiving less attention.

Composition. This phase has two sub-phases: conception and reuse [51]. Conception

aims at producing a high-level representation of the scientific experiment protocol, which

is afterward refined and instantiated as a concrete implementation [51] in the form of a

workflow or script. Reuse consists of retrieving an existing component and adapting it to

a new purpose [51].

Some proposals support the conception sub-phase [33, 29, 97, 99, 42, 58, 52, 17].
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Table 2.2: Aspects of collaboration in the surveyed approaches

Approach Aspects of collaboration
Experiment

Phase
Temporality Concurrency

Control
Sharing Provenance

Support
Confucius
[50, 86, 96, 99]

Composition Asynchronous;
Real Time

Pessimistic Data and
models

Data;
Interaction

myExperiment
[35, 36, 23]

Composition
and Analysis

Asynchronous N/A Data and
models;

Knowledge

Yes**

CAMERA [5, 81] Composition
and Analysis

Asynchronous N/A Data and
models;

Knowledge

Yes**

e-ScienceNet
[16, 14, 15]

Composition Asynchronous N/A Data and
models;

Knowledge

No

Collaborative
PL-Science [62]

Composition
and Analysis

Asynchronous N/A Data and
models;

Knowledge

No

Ellkvist et al.
[29]

Composition Real Time Optimistic Data and
models

Data

VisTrails [33] Composition Asynchronous Optimistic N/A Data
NoCoV [90] Analysis Asynchronous;

Real Time
N/A N/A No

RASA [53] Execution Asynchronous N/A Physical
resources

No

Wood, Wright,
and Brodlie [94]

Analysis Real Time N/A N/A No

ViroLab [12] Composition Asynchronous N/A Data and
models

Yes*

J. Zhang et al.
[97]

Composition Real Time Pessimistic Data and
models

Data;
Interaction

Mostaeen et al.
[58]

Composition N/A Pessimistic N/A No

ProvDB [52] Composition Asynchronous Optimistic Data and
models

Data;
Interaction

Dataverse [46] Composition
and Analysis

Asynchronous N/A Data and
models

Yes**

OpenML [87] Composition
and Analysis

Asynchronous N/A Data and
models

No

CoCalc [17] Composition
and Analysis

Asynchronous;
Real Time

Optimistic Data and
models;

Knowledge

Data;
Interaction

Sumatra [21] Analysis Real Time N/A Data and
models

Data

*No details are provided to correctly classify which provenance types are collected
**Stores data collected by other tools
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VisTrails [33] is a provenance-aware Workflow Management System that implements sup-

port for the collaborative composition of the workflow. Ellkvist et al. [29] and Zhang

et al. [97] introduce VisTrails extensions that unleash real-time collaboration on the

composition phase of the experiment. Confucius [99] extends Taverna [42] to allow the

collaborative composition of workflows by using a client-server architecture that commu-

nicates using a service-oriented architecture and XML messages. Mostaeen et al. [58]

propose a fine-grained lock scheme that aims to increase efficiency in workflow conception

by reducing the waiting time for lock release. ProvDB [52] uses Git to allow the user

to collaborate on experiment conception. It also enriches the information collected using

ingestors. CoCalc is a virtual workspace for calculations, research, collaboration, and for

authoring documents [17], which provides a web portal where scientists can share files

with multiple collaborators. This includes Jupyter notebooks, where multiple scientists

can simultaneously edit scripts in real-time.

Regarding the reuse sub-phase, many of the selected publications focus on the sharing

aspect, thus allowing scientists to share a component, a workflow, or a dataset with their

peers. That is the case of CAMERA [5], e-ScienceNet [16], myExperiment [35], OpenML

[87], Dataverse [46], Collaborative PL-Science [62] and ViroLab [12]. ViroLab [12] provides

a way for sharing script components of a workflow. The remaining approaches focus on

experiments represented as workflows.

Execution. RASA [53] is the only solution that addresses collaboration in the execution

phase of the experiment. RASA is a framework that coordinates the use of scientific

instruments, being able to dynamically adapt workflows during the experiment execution

according to the needs of the scientists and the equipment.

Analysis. The analysis phase has three sub-phases: query, visualization, and discov-

ery [51]. During Query, scientists can relate data and extract information of both the

experiment results and provenance data. Visualization simplifies the analysis of large vol-

umes of raw data. Data is often projected in graphs or maps to simplify the identification

of patterns and the reasoning over the data. During discovery, scientists evaluate query

results and visual data to draw conclusions about the entire experiment, aiming at check-

ing if the hypothesis is likely to be correct or if it should be refuted. For this, scientists

must analyze the experiment as a whole, including all the executions of the experiment

(trials) [59].

OpenML [87], CAMERA [5] and myExperiment [35] provide query support. They

offer a mechanism for sharing not just the workflow components but also other data, such
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as results and provenance datasets. The myExperiment platform also allows scientists to

interact with each other and discuss the shared results. These approaches support the

discovery sub-phase since they provide a mechanism to analyze and discuss the experiment

as a whole. Although not described in the paper [21], Sumatra provides some support to

collaboration [80]. It allows different users to share the same provenance database and

provides some query features to support the query sub-phase.

NoCoV [90] and Wood, Wright, and Brodlie [94] support the visualization sub-phase.

NoCoV (Notification-service-based Collaborative Visualization) uses a client-server archi-

tecture to provide mechanisms for the collaborative visualization of experiment data. The

pipeline controller (server) is responsible for synchronizing the clients’ visualization, and

multiple clients can connect to it simultaneously. The clients could be a pipeline editor

(which can update the visualization pipeline) or a parameter control client (which can only

adjust visualization parameters). Wood, Wright, and Brodlie [94] propose a collaborative

approach on top of IRIS Explorer [31] that allows multiple scientists to collaboratively

interact over a visualization.

CoCalc [17] supports the query, discovery, and visualization sub-phases. It allows sci-

entists to query the results of the experiment and its history, besides other data. Scientists

can also visualize the results using Jupyter notebooks and libraries, such as matplotlib.

They can also use chat rooms to discuss the experiment and reason about it.

Dataverse [46] focuses on creating an infrastructure to share datasets related to scien-

tific publications. It provides the data to be used in the query, discovery, and visualization

sub-phases, although it does not explicitly deal with them.

2.2.2 Temporality

Starting with the approaches that implement asynchronous interactions, CAMERA [5],

myExperiment [35], e-ScienceNet [14], Collaborative PL-Science [62], ViroLab [12], Data-

verse [46] and OpenML [87] provide solutions focused on the sharing of data and compo-

nents, where a scientist can publish workflows, components or datasets. These published

artifacts become available for other scientists to reuse them asynchronously. On VisTrails

[33], each version of the workflow is treated as a node in a version tree. Nodes are never

modified or deleted (each modification generates a new node in the tree). To collabo-

ratively compose a workflow, scientists can asynchronously work in their local copy of

the workflow and synchronize it with another scientist’s copy when needed. However, if

two scientists modify the same workflow before synchronizing it, this generates multiple
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disjoint versions, which can be problematic since the changes could be complementary.

When this occurs, the scientist should re-implement part of the workflow. ProvDB [52] is

a client-server application that uses Git to support version management tasks as well as

distributed and decentralized management of individual repositories. Each user makes the

necessary modifications to her local repository and, asynchronously, synchronizes them

using Git.

We have also identified several proposals that provide real-time collaboration. Ellkvist

et al. [29] implement a solution based on a client/server architecture, where the server

is a MySQL database, and the client is a modified version of VisTrails that consists of a

mechanism to unleash real-time collaboration during workflow composition. The server

is used as a shared database to synchronize the versions among the scientists. When

one scientist makes a modification, it is saved on the shared database and the other

clients are automatically notified to update their local versions. Although implemented in

VisTrails, the authors argue that their solution could be implemented in other provenance-

aware Workflow Management Systems. Zhang et al. [97] also implement a plugin to

VisTrails, which allows any changes made by one scientist to be immediately reflected

on all other collaborators’ screens. The approach communicates with VisTrails through

third-party packages and the VisTrails API. It utilizes Git to provide a new version tree

over the existing VisTrails History View. Wood, Wright, and Brodlie [94] present a real-

time approach based on a client-server architecture, which allows scientists to visualize

an experiment collaboratively. Users can share and alter visualization parameters and

visualization pipelines so they can see other users’ changes in real-time. Participants may

also disconnect single modules from their group to allow periods of independent work on

a subset of the pipeline while remaining in contact with the rest of the session. Sumatra

[21] provides a way of sharing the provenance database in real-time. The information is

shared as soon as it is collected. However, the solution still has several limitations and,

in some scenarios, even data loss is possible.

Three solutions work in both real-time and asynchronous scenarios. Confucius [99]

provides a solution inspired by a protocol of human communication called Robert’s Rules

of Order, which is a set of rules created by Henry M. Robert in 1876 to run effective and

orderly meetings with maximum fairness to all members [43]. Confucius implements that

with a locking strategy that controls which scientist has the right to interact at a given

time in a real-time collaboration session. Confucius also maintains a database on the

central node that is used for storing provenance of collaboration and workflow evolution,

which allows asynchronous collaboration. NoCoV [90] is implemented in a service-oriented
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architecture that uses notification Web services to synchronize clients and server. When

someone alters the visualization pipeline, the pipeline controller notifies other clients, so

everyone sees the same visualization in real-time. To transmit information between the

pipeline controller and the client, it uses skML [28], an XML-based dataflow description

language. NoCoV uses the stateful Web Services provided by GlobusToolkit 4 (GT4)

[83]. Using this stateful feature, the state of the pipeline is persisted and users can

retrieve the saved pipeline to continue the work of other users, thus achieving asynchronous

collaboration. CoCalc [17] provides a solution based on a web portal where scientists can

simultaneously compose scripts in real-time. All changes are immediately synchronized

with others. It saves files and data in its cloud infrastructure, so scientists can leave the

session and rejoin when needed (allowing asynchronous work).

2.2.3 Concurrency Control

All approaches providing a mechanism for concurrency control focus on the composition

phase of the scientific experiment.

Starting with the approaches that implement the pessimistic policy for concurrency

control, Confucius’ authors [99] treat the concurrency control problem as they would treat

it in a face-to-face activity. A central node is needed for the collaboration to occur. A

group is registered on this node, and the person responsible for registering the group is

automatically assigned as the group moderator. The moderator is responsible for shift

control, which is the definition of which group member is allowed to change the workflow

at a given time. There is an algorithm for automatically granting and releasing the right

to the shift, but the moderator can intervene by taking the right to the shift. Confucius

also considers that workflow development can last for long periods in an asynchronous

form and, in this scenario, workflow level locking may not be appropriate. Therefore,

Confucius blocks smaller building blocks. Thus, several scientists can change the same

workflow at the same time. Confucius establishes that the smallest building blocks are

tasks and data channels, that in Taverna are called processors and data links, respectively.

Confucius introduces the concept of synchronization area “that represents a conceptual

area in a shared scientific workflow, which allows only one collaborator to work on it at

a given time” [99]. When the user starts to modify a data link, the synchronization area

is the data link itself. When the user locks a processor, the synchronization area is the

processor and all the fan-out data links of the processor. Zhang et al. [97] also implement

a pessimistic collaboration protocol based on Robert’s Rules of Order. The protocol is
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fully described in [45, 98]. Mostaeen et al. [58] analyze the existing locking schemes in

terms of concurrency control on the composition of workflows. The approach presents a

pessimistic strategy of fine-grain locking in scientific workflows. The lock is done for a

single user but at the attribute level, while other approaches use turns or module level

locking. The main benefit here is to reduce the waiting time for a lock since smaller

portions of the workflow are locked for each modification.

Only four approaches implement the optimistic policy for concurrency control. El-

lkvist et al. [29] and VisTrails [33] present an optimistic lock approach that creates differ-

ent branches in the version tree in the case of simultaneous changes. Although VisTrails

presents a mechanism for merging, it merges two version trees of different files and not

two branches of the same version tree. If the scientists want to keep both of the changes,

they will have to use the diff functionality to better understand what has changed and

to replay the changes manually. VisTrails also has a functionality called "analogy" that

could help on the process: given two versions of a workflow, VisTrails can automatically

detect their differences and apply those differences to another workflow version. Ellkvist

et al.’s proposal [29] is built on top of VisTrails, and although it adds support to real-time

collaboration, it uses the same concurrency control approach of VisTrails. ProvDB [52]

also works on the idea of immutable versions, in which any update will result in a new

version. In Cocalc [17], the whole experiment environment is cloud-based. All changes

are made directly in the cloud and synchronized with the online scientists’ browser – there

is no lock.

2.2.4 Sharing

Most of the approaches providing sharing features allow the sharing of data and models.

That is the case of e-ScienceNet [16], ViroLab [12], myExperiment [36], CAMERA [5],

Dataverse [46], OpenML [87], ProvDB [52], Zhang et al. [97], Ellkvist et al. [29], Confucius

[99], Collaborative PL-Science [62], CoCalc [17] and Sumatra [21]. ProvDB [52], Zhang et

al. [97], Ellkvist et al. [29], and Confucius [99] work with a centralized database for the

experiment, which stores the provenance collected from the collaborative experiment and

makes this information available to the involved scientists. ViroLab [12] addresses the

issue of sharing code blocks for reuse. The approach also mentions the persistence and

sharing of provenance but does not provide details on what kind of provenance information

is stored and shared. Sumatra [21] provides a way of sharing a provenance database

between multiple scientists.
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Roure, Globe, and Stevens [24] argue that one of the barriers of workflow reuse is

on how the knowledge about the workflow could be transmitted to potential users. That

challenge can be minimized by the distribution of other documentation data in addition to

the workflow definition. Most of the approaches try to increase collaboration by adding the

possibility of sharing knowledge. That is the case of e-ScienceNet [16], myExperiment [36],

CAMERA [5], Dataverse [46], CoCalc [17], and Collaborative PL-Science [62]. Pereira et

al. [62] propose the Collaborative PL-Science, an extension of PL-Science [18]. It aims

to facilitate the reuse of components in the construction of scientific workflows, thus

combining models and knowledge sharing. The idea is that adding information that helps

to understand published artifacts facilitates reuse. The approach uses ontologies to enrich

the information of shared objects. CoCalc [17] allows the sharing of a great variety of

files, including scripts in multiple programming languages. It also allows the sharing of

documentation that can help scientists to better understand what has been made on the

experiment and help them to better use the shared data and scripts. e-ScienceNet [16] is

another approach that allows both the sharing of data and models and also knowledge. It

differs from other approaches because it presents a peer-to-peer solution for sharing the

experiment results and models without the dependency of a central server.

Some publications explore the creation of portals for sharing data and reusable com-

ponents in research, where it is common to share scientific workflows. Goble and Roure

[36] propose myExperiment, a social network for scientists focused on workflow-related

issues. It allows the sharing of the workflow itself as well as other metadata, such as

provenance logs, besides enabling researchers to interact using the tool, commenting, and

discussing the shared resources. CAMERA [5] also focuses on the sharing of scientific

workflows and provenance logs. The tool works exclusively with Kepler [4] workflows and

allows the execution of the experiments within the portal. OpenML [87] is focused on

the machine learning community and provides a portal to share datasets, algorithm im-

plementations, and workflows. It also presents a Web API, which allows users to interact

with the portal in a programmatic form, and ways of sharing scientific tasks and receiv-

ing other scientists’ collaboration. Dataverse [46] provides a Web infrastructure to share

datasets related to scientific publications. The main idea is that sharing the datasets may

increase the reproducibility of experiments, and, as a counterpart to the authors, it may

increase the number of citations of the related publications [46].

RASA [53] is the only approach that focuses on sharing physical resources. The

approach provides a framework for coordinating the use of scientific instruments. The

idea is to provide a mechanism to dynamically modify workflows depending on the needs
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of the requester scientist and the particularities of the equipment, and also the knowledge

of the equipment operator.

2.2.5 Provenance Support

As seen in Table 2.2, many of the tools do not collect provenance. Although ViroLab [12]

provides some provenance support, it does not provide details on what is stored. Data-

verse [46], CAMERA [5], and myExperiment [24] provide support for storing and sharing

provenance data collected by other tools. CoCalc [17] collects interaction provenance

through the log of the activities executed by scientists, but this unstructured information

is hard to query. VisTrails [33], Ellkvist et al. [29], and Sumatra [21] can capture data

provenance from multiple users in their local stations and consolidate them in a single

database, but those databases do not properly represent collaboration aspects of the re-

search covered by Section 2.1, thus collaboration provenance is not included. Zhang et al.

[97], Confucius [50, 86, 96, 99], and ProvDB [52] provide data and interaction provenance

support, and use the collaboration-aware provenance models described in Section 2.1. The

models proposed by Confucius and ProvDB need extended properties to represent some

collaboration aspects, but the tools proposed by those papers are not able to capture

these properties. Thus, there is a difference between the provenance types represented by

the models and those supported by the tools.

2.3 Discussion and Opportunities

Figure 2.7 shows a timeline that helps understand how research has progressed in this

field. Some of the publications are highly related and represent the evolution of the

same research. In such cases, we treat them in a consolidated manner, thus linking these

publications in the figure and handling them as a single approach. This topic has received

much attention in recent years, but there are still some gaps to be further explored. In

this section, we classify the selected approaches, answer the research questions introduced

in Chapter 1, discuss the gaps that still exist, and present opportunities derived from

those gaps.

In the Introduction, we highlight two challenges (C1 - how to collect provenance in

a collaborative experiment; and C2 - how provenance can be used to make collabora-

tion easier in this environment) and two research questions related to those challenges

(R1 - How do existing tools store and collect provenance in a collaborative experiment?;
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Figure 2.7: Timeline of selected publications

and R2 - how do existing tools use provenance to make collaboration easier in scientific

experiments?). We answer them now.

R1: How do existing tools store and collect provenance in a collaborative

experiment? To answer this question, we analyzed the available models for storing

provenance in collaborative environments. Although significant progress has been made

with those models, all of them present limitations (they do not deal with different workflow

formats, or do not deal with workflow evolution). Models that can represent all the aspects

we analyzed do so by using extended properties, which makes them difficult to query.

Regarding the available tools and how they collect provenance: Some tools (Dataverse

[46], CAMERA [5], and myExperiment [24]) just provide storage for provenance, but

do not collect it. Other tools (VisTrails [33], Ellkvist et al. [29], and Sumatra [21])

provide a way of consolidating the provenance collected from different users but lack

support for other collaboration aspects. Finally, a few tools (Zhang et al. [97], Confucius

[50, 86, 96, 99], and ProvDB [52]) use collaborative aware provenance models but still

present some limitations.

R2: How do existing tools use provenance to make collaboration easier in

scientific experiments? We conclude that the surveyed approaches fail to use the

collected provenance to support the collaboration. Although Confucius [99], Zhang et al.

[97], and ProvDB [52] are capable of collecting provenance of the collaboration process,

they do not propose forms of using that valuable data to increase the efficiency and

awareness of the process.

As illustrated in Table 2.2, most of the approaches support the composition phase

of the experiment life cycle (especially the conception sub-phase). However, they are



2.3 Discussion and Opportunities 24

mostly based on Workflow Management Systems and ignore the fact that many scientists

use scripts in their experiments [67]. The only approaches that support experiments

represented as scripts are ViroLab [12], Sumatra [21], CoCalc [17], and ProvDB [52].

However, ViroLab only addresses the reuse sub-phase of the experiment composition.

Sumatra fully delegates the script composition to Git and presents several limitations for

the shared provenance storage, such as a possible data loss depending on the network

connection. Despite being quite complete, CoCalc [17] demands the scientist to be online

in order to work, and that she works on the browser, which can be a tough change in the

workspace, tools, and IDEs that the scientist is used to. It is possible to run applications

from the CoCalc portal, but this is not the same as running them from the scientist’s

machine. It also presents several limitations on free accounts. Another point worth

mentioning is that it does not properly capture the provenance of the experiment. It

presents features like "time travel" and "log" that let users see the history of the files

and activity on the project, but it is very high level and may not be enough to guarantee

the reproducibility of the experiment, for example. ProvDB uses Git to handle version

management and a provenance ingestor framework to capture other provenance data, but

it is highly specialized in data science problems and is not well prepared for a general-

purpose experiment.

Although versioning tools handle several collaborative needs of script building, they

are software development tools that do not address specific problems in scientific research.

These tools will not provide provenance capture and analysis support by default. Prove-

nance is not just related to the obtained results but also the input data, intermediate

results, etc. Trying to deal with this complexity without the proper tooling support could

take much effort from the scientists and steal the energy that should be spent on research.

Although ProvDB considers these challenges, it depends on the scientist being able to ac-

cess an external tool (Git), a specific OS (UNIX), and demands the creation of ingestors

to capture some provenance aspects. ProvDB is also focused on a specialized type of

experiment (data science analysis), and does not address awareness during collaboration.

Thus, we must investigate and design provenance-aware tools that can handle

composition, execution, and analyses of generic script-based experiments col-

laboratively, increasing the awareness of users during the process at the same

time .

The execution phase also lacks support. We could find only one approach that sup-

ports collaboration in this phase of the experiment life cycle. RASA [53] supports the

execution phase by controlling access to physical resources such as equipment. Providing
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provenance-aware support of the execution phase is crucial in collaborative experiments,

since without it, important aspects of the collaboration may be lost. In fact, for repro-

ducibility purposes, it is crucial to know which user executed each part of the experiment,

where and under which conditions. Thus, the support for the collaborative execution

of scientific experiments needs more investigation .

Some approaches support the analysis phase of experiments. Most of them allow

scientists to comment on the experiment structure or results. Some approaches [12, 33,

52, 99] provide provenance gathering of the collaborative experiment that could help the

analysis of the experiment. However, they do not provide a clear way to collaborate

throughout the analysis, so they were classified without this phase of the life cycle in

Table 2.2.

Temporality is well explored, with several approaches supporting asynchronous or

real-time interactions. However, some features could be improved. When conducting an

experiment in groups, it is important to know what happened in the experiment while

scientists were offline, who did what, and in which part of the experiment (interaction

provenance). It is also important to know if there is anyone online and in which part of the

experiment they are working at. Although some tools let the users query for some of that

information, it would be desirable that such information would be automatically shown

to users, depending on the context of the experiment. Thus, an interesting issue to

examine will be ways of increasing the awareness of the scientists about the

actions of their collaborators .

As for concurrency control, most of the approaches use a pessimistic locking scheme.

Pessimistic locking may work well in real-time scenarios, but it can be quite troublesome

for asynchronous collaboration. VisTrails [33] and Ellkvist et al. [29] are the only solu-

tions that work with an optimistic locking scheme, but they do not implement a merging

mechanism capable of merging two workflow branches. Although VisTrails diff and anal-

ogy functionalities could help to merge two branches, they impose some additional steps

for such a task and lack some basic merge functionalities like conflict resolution. Thus,we

need tools that work with optimistic locking and provide complete merge sup-

port in the composition of workflows .

Also, in a collaborative environment, some collaboration tasks may perform better

if treated with a pessimistic locking policy while others will benefit from an optimistic

approach [70]. In experiments with files that are difficult to merge, scientists could opt to

work with a pessimistic policy, while in others they may prefer to work with an optimistic
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one. Existing tools only implement one of the policies, so if scientists want to use this

tool, they are forced to use the implemented policy. Scientists must have the flexibility

needed to interact in a way that is more appropriate to the use case in hand. Thus, tools

that allow scientists to choose the more appropriate lock policy are needed .

Sharing is well covered in the literature with a wide range of available solutions.

Solutions address centralized sharing as well as peer-to-peer sharing, besides providing

mechanisms for commenting and enriching the shared artifacts, making them easier to

use. We believe that, in this aspect, there is no clear gap in the available tools.

We end up finding that none of the available tools are capable of using provenance to

make collaboration easier in scientific experiments (related to R2). So, there is a need

to investigate how to use the captured provenance to make collaboration easier

in scientific research .



Chapter 3

The Script-Based noWorkflow System

With the findings we discussed in Chapter 2, we decided to tackle the gap of support for

collaboration in provenance-aware script-based approaches. We aim to take advantage of

the progress already done in Script-based systems instead of building an entire Script-

Based system from scratch. In particular, we were looking at tools that do not demand

the scientist to previously specify the experiment in a workflow format. To do so, we

evaluated well-documented open-source tools that we could build on top of and unleash

the collaborative benefits. We ended up with two possibilities: noWorkflow [59] and

Sumatra [21]. We chose noWorkflow because, when compared to Sumatra [21], it allows

capturing provenance in a finer grain and presents a more elaborate visualization and

search layers that facilitate the perception of the research evolution and access to the

collected data. Before taking a deeper look at our approach and it is implementation is

very important to have some background knowledge about noWorkflow, the script-based

system that we decide to extend on our implementation.

noWorkflow [59, 69, 64, 65, 63, 68] is a self-contained tool that is capable of collecting,

storing, and visualizing provenance from Python scripts. noWorkflow works transparently

– it analyzes the script execution, capturing and storing provenance information that can

later be used in the analysis phase of the experiment. For that, assuming the experiment

is written in a Python file named script.py, instead of running python script.py, scientists

run now run script.py.

In this chapter we provide further details of noWorkflow functionalities and imple-

mentation: Section 3.1 presents the noWorkflow Architecture and Features, focusing on

the Provenance Storage and Provenance Analysis modules, since these are the modified

modules by our extension; Section 3.2 details noWorkflow’s gaps regarding collaboration.
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Figure 3.1: noWorkflow architecture [59].

3.1 noWorkflow Architecture and Features

The noWorkflow architecture can be divided into three modules (as shown in Figure 3.1):

provenance capture, provenance storage, and provenance analysis. The provenance cap-

ture module is responsible for executing the Python script and also for collecting its

provenance. The provenance storage module is responsible for storing both input and

output files and capturing provenance (executed functions, parameters, variable values,

etc.). The provenance analysis module is responsible for providing querying interfaces

to the provenance storage. It also provides pre-built graphic visualizations that help sci-

entists to better understand the experiment and its provenance. We propose extensions

that add new collaboration features in the provenance storage and provenance analysis

modules. Thus, in this section, we provide details of these modules.

3.1.1 Provenance Storage

In the provenance storage, data is stored in a folder called ".noWorkflow", which is auto-

matically created by noWorkflow in the directory where the script execution was invoked

(using now run script.py). Each script execution on that directory will correspond to a

trial that is stored in the provenance storage. The information collected by noWorkflow

is spread across an SQLite database and a content database.

The content database stores all files used during the execution of the script. This

includes the script itself, versions of the used Python libraries and the input/output files

of the experiment (as well as intermediate files). noWorkflow is able to capture these data
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Figure 3.2: noWorkflow SQlite database model.

without the need to perform any changes on the scientist script, it is done by overriding

the system file reads and writes function [59].

To store these files, noWorkflow first generates the SHA1 hash code of the file content.

Then, the first two characters of the SHA1 hash code are used as the folder name, and the

remaining characters are used as the file name. For example, a file with SHA1 hash code

2aae6c35c94fcfb415dbe95f408b9ce91ee846ed will be stored in the folder ./noWorkflow/2a

with file name ae6c35c94fcfb415dbe95f408b9ce91ee846ed. Using SHA1 hash codes to iden-

tify the files prevents noWorkflow from storing the same file multiple times and makes it

simple to identify multiple trials that depend on/use the same files. Additionally, placing

the files in folders according to their hash prefix prevents OS limitations on the number

of files that can be stored in a single folder.

The SQLite database stores information regarding the execution of the script, such

as environment variables, execution parameters, function calls, and other information,

depending on the level of granularity chosen by the user in the provenance capture. This

database contains a trial table with an auto-increment identifier and several other tables

that are related using foreign keys. The content database and the SQLite database are



3.1 noWorkflow Architecture and Features 30

linked together by the file hash code saved on the SQLite database. The full database

model is illustrated in Figure 3.2.

Besides being a tool made to run Python scripts, noWorkflow’s source code is also

written in the Python programming language. To interact with the SQLite database it

uses SQLAlchemy [60]. SQLAlchemy is an open-source SQL toolkit and object-relational

mapper (ORM) that serves to abstract the interactions with the database. Instead of

writing SQL queries, the programmer uses the library commands to insert, update and

delete entities of the database, and even to control the database schema. This abstraction

layer makes the process of interacting with the database simpler, and also makes it easier

to switch between database providers since the programmer does not need to deal with

SQL variations between database providers.

Figure 3.3: View of the provenance information in noWorflow. (1) Graph with the trial
history showing two trials; (2) graph view of trial 1.1.1 – nodes are function activations,
and arrows denote sequence of calls (solid arrows) and returns (dashed arrows); (3) Details
of trial 1.1.1.

3.1.2 Provenance Analysis

The provenance analysis module provides several querying options: command line queries,

Prolog queries, and SQL queries (which need to be run directly in the SQLite database).

noWorkflow also has a visualization tool (shown in Figure 3.3) activated by the command

now vis. The now vis command starts a web interface that allows viewing the collected

provenance, comparing two trials, inspecting accessed files etc. It is a quick way of

checking dependencies, function activations, parameters, etc. This visualization tool is
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Figure 3.4: View of trial diff in noWorflow. (2) graph view of trial 1.1.1 and trial 2.1.1
diff, considering function activations; (3) Details other differences between trial 1.1.1. and
trial 2.1.1

part of the noWorkflow source code, and it is built using the Python framework Flask [39].

Panel (1) of Figure 3.3 shows a graph with the trial history. Squares represent a script

version (1.1, for instance), while black circles below them represent an execution of that

script version (a trial). In the Figure, there is one execution of the script version 1.1, and

this is labelled as trial 1.1.1 (the trial label is not shown in Panel (1)). The trial history

graph shows that the scientist modified the script version 1.1, creating the script version

2.1. An arrow from square 2.1 to square 1.1 represents the evolution of the script code.

The scientist then executed this 2.1 script version (the black circle below the 2.1 square

represents this execution as trial 2.1.1). All of this history is captured automatically and

transparently by noWorkflow, without the need of using a version control system.

Panels (2) and (3) show details of the trial that is selected in Panel (1). The blue circle

around the trial 1.1.1 on Panel (1) means that this is the selected trial detailed in Panels (2)

and (3)). Panel (2) shows a graph that represents the execution of trial 1.1.1. Each node

in this graph corresponds to the execution of a function in the script (which noWorkflow

calls function activation). Solid black arrows represent the start of activations, blue arrows

represent a sequence of calls within activations, and dashed arrows represent returns, the

node colors represent their duration, in a scale where red represents the slowest function

activations, and white, the fastest ones[68]. Finally, Panel (3) presents details of trial 1.1.1,

such as execution duration, module dependencies, arguments, environment variables, etc.
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Figure 3.5: Illustrates two scientist (Alice and Bob) trying to collaborate using noWork-
flow.

It is also possible to compare trials visually, for that the user must select two trials in

Panel (1) instead of one. When this happens, Panel (2) and Panel(3) show a comparison

between these trials can also compare the graphs of two trials, as illustrated in Figure

3.4. In this case, Panel (2) shows that the only difference in function activition it is the

inclusion of the node "print" on Trial 2.1.1. Note that Panel (3) now only shows the trial

information that is different in the two experiments. We can observe that the experiments

were started and finished in a different time, there is also a small variation on experiment

duration, the process id is different between the experiments, and the trial 2.1.1 generated

a file called "output2.png" while trial 1.1.1 generated a file called "output.png". It is also

possible to see that only the file name changed since the hash of those two files is the

same.

3.2 Lack of Collaboration Support

noWorkflow was designed for single users. Consequently, collaboration is not supported

by the tool itself, and scientists must do some workarounds to work collaboratively when

using noWorkflow. As an example, suppose that scientists Alice and Bob are working col-

laboratively on an experiment using noWorklow as is. As illustrated by Figure 3.5, Alice

writes the script and runs the first trial. noWorkflow automatically captures provenance

data of the executed trial. Then, she compresses the provenance storage (the .noWorkflow

folder) and sends it to Bob by e-mail along with the script of the experiment. Bob then
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uncompresses the folder, makes some changes to the script and runs it. He then does the

same – compresses the folder and sends it back to Alice.

Although the strategy of using email (or another external tool) to share the experiment

and the provenance database allows them to work collaboratively, it adds the burden of

compressing and sending files back and forth, but, most importantly, it prevents Alice

and Bob from working in parallel, which is unthinkable in the present days. To address

this problem, Alice could save the provenance storage in a shared network folder, but

that would imply in users having to be in the same network, and, most importantly, since

noWorkflow was not designed to work this way, several concurrency problems may occur.

With this example is possible to visualize that collaboration between people involved

in the experiment must be integrated with the Script-based System, and using external

and unconnected tools to collaborate will typically result in work limitations and overhead

to the researchers. In the next chapter, we propose a solution to this problem.



Chapter 4

Collaborative approach

With the growth of in silico experiments, the problem of managing this kind of experiment

has received some attention from researchers. As we identified in Chapter 2, one of

them resides in the lack of support for collaboration in provenance-aware script-based

approaches. Some authors propose provenance models to capture the collaboration in

this environment. Missier et al. [54] and Altintas et al. [1, 2] present provenance models

that are capable of representing collaborative experiments. Although this is an important

subject, scientists still need tools that can collect this data and present it properly to

scientists involved in the research.

Workflow management systems provide some collaborative features, like Confucius

[99] and VisTrails [33], however, they are workflow-based solutions, which requires the

experiment to be described in a specific format – they do not support script-based exper-

iments. While script-based systems provide very few features to support collaboration,

scripts are a trendy way of representing in silico experiments [66] and thus, supporting

them is a must for the scientific community.

When we evaluate script management, it is natural to consider some software engi-

neering tools like versioning systems. Although versioning systems (e.g. Git [78] and

Mercurial [61]) deal with several collaborative aspects of script construction, they are

aimed at software development and concerned only with the development phase of script

composition. Specific problems of scientific research, such as the analysis phase, repro-

ducibility of the experiment, and the consequent need for provenance collection in the

execution phase of the experiment [41], cannot be solved using only versioning tools.

Besides that, the more traditional provenance-aware script-based solutions [59, 48] are

focused only on collecting provenance and do not deal with collaboration aspects. Even
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solutions that address collaborative aspects of the experiment, such as ProvDB [52] and

Sumatra [21], still have some limitations. Despite having a feature that allows multiple

users to use the tool, Sumatra does not synchronize the data files of the experiment when

collaborating, and the researcher is in charge of synchronizing this data. Sumatra also

requires that the server be accessible during the execution of the experiment with the risk

of losing information if the server is not reachable. ProvDB, on the other hand, has limi-

tations such as: it depends on an external tool (Git); it works only on a specific operating

system (UNIX); it focuses on a specific type of experiment (data science analysis); finally,

it demands the development of ingestors to capture provenance data.

To fill in this gap and support the execution of collaborative experiments, we propose

an approach that allows aggregating, synchronizing, and analyzing the provenance infor-

mation of an experiment conducted collaboratively by several scientists on a Script-based

system. To achieve that, our proposed approach consolidates the provenance database of

the various scientists who are involved in the experiment.

This chapter details this proposed approach and it is implementation, and proceeds

as follows: Section 4.1 presents our conceptual approach, detached from any Script-based

system; Section 4.2 details the implementation of that approach on top of noWorkflow.

Finally, in Section 4.3 we use the provenance model classification and taxonomy presented

on Chapter 2 to classify our approach and compare it with existing tools.

4.1 Proposed approach

Our approach aims to design a provenance-aware Script-based approach ready for collab-

oration. In our view for scientists to have all the benefits that provenance can provide,

the Script-based system must simultaneously provide the provenance data to all the sci-

entists involved. Scientists should be able to work in parallel and the system should be

able to store and consolidate the provenance data in single storage. The Script-based sys-

tem should help larger groups to organize their experiments and be able to make "cross

experiments" queries during the analysis phase.

In order to provide flexibility to our users, we propose the possibility of having two

types of architectures: a "Central Node Collaboration Architecture" and a "Peer-to-peer

Collaboration Architecture". In the "Central Node Collaboration Architecture", there is

a server working as the single source of truth for the provenance data, with the benefit of

a scientist only needing be aware of the "provenance server". This eliminates any need to
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communicate with other machines, but it implies in an infrastructure cost. On the "Peer-

to-peer Collaboration Architecture", on the other hand, there is no need for setup or

infrastructure cost, but the collaborators in the experiment must be able to communicate

between them (across a network) in order to share provenance data.

In Section 4.1.1 we cover the details of the "Central Node Collaboration Architecture",

while in Section 4.1.2 we cover the "Peer-to-peer Collaboration Architecture". Finally, in

Section 4.1.3 we cover the support to multiple experiments and discuss its importance.

4.1.1 Central Node Collaboration Architecture

In our approach, we use concepts of DVCS (Distributed Version Control Systems) [61, 78],

which are already consolidated in Software Engineering. The idea is that each scientist

has his/her own provenance storage containing the information of the experiment. This

repository is then synchronized with a central repository, where it would be available to

other interested parties. To achieve these goals, we propose two new operations (pull and

push) to allow the scientists to send and receive data from another provenance storage.

Both operations receive an address as a parameter, indicating on which provenance storage

the operation should be made.

Figure 4.1 illustrates how the proposed approach works. In this scenario, two scientists

are working together on the same experiment using a central node as the provenance

repository of the experiment. When one scientist executes the pull operation, her machine

asks the server for the list of trials that are stored on the server. Then, it compares this

list with the local provenance database, decides which trials have to be sent to the central

node, and sends them out. The push operation has a very similar behavior but, in this

case, the scientist machine discovers which trials on the server are not on the local storage

and then retrieves them from the server.

This approach allows the scientists to work offline without access to the central node.

When back online, scientists can share their work (using the push operation) and obtain

the progress made by others (using the pull operation). This has the additional advantage

of centralizing the provenance data of the whole experiment into a single provenance

database, which could be very helpful for the scientists working on the experiment. Some

of the advantages reside in facilitating scientists to reproduce the trials executed by others,

attributing the correct credit for those involved, and making it easier for third parties to

understand and reproduce the experiment.
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Figure 4.1: Central node collaboration architecture.

To illustrate a use case where these operations are used, we can return to the example

given in Chapter 3, but now considering that Alice and Lisa are working collaboratively

on an experiment using our proposed approach. Alice writes the script and runs the first

trial. The Script-based tool automatically captures provenance data of the executed trial.

Then, she uses the push command to send provenance information to the central node

server. Lisa then uses the pull command to receive experiment data, changes the script

and runs it. Lisa then does the same – uses the push command to send information to the

central node where it will be available for Alice and other scientists. This will produce a

single provenance database regarding the whole experiment, with several benefits in terms

of analysis of provenance data and experiment reproducibility. Another important aspect

is the capability of working in parallel and still being able to consolidate the provenance

into a single provenance database, which is not possible in some tools [21].

4.1.2 Peer-to-peer Collaboration Architecture

Although we see much value in having a central node to store provenance data, we also

understand that this might not be possible in some scenarios. So, in our approach, we

also support a peer-to-peer model, allowing scientists to share data without the need of

a central infrastructure. This model also uses the push and pull operations that are used

for the central node approach.

As shown in Figure 4.2, in this scenario, each scientist has their own provenance

database, but there is no central provenance storage.. If Alice wants to share or retrieve
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Figure 4.2: Peer-to-peer collaboration architecture.

provenance data from Lisa, she connects directly with Lisa using the pull and push com-

mands. And after that, Lisa can connect with Bob and transmit the received data.

This approach has the clear advantage of not needing a dedicated infrastructure pre-

viously setup. However, the biggest disadvantage of this approach is the lack of a central

provenance storage always available working as the ground truth.

4.1.3 Multiple Experiment Support

We also propose the support for multiple experiments. This is relevant since most existing

tools that capture provenance of scripts allows only for a single experiment (with several

trials). New experiments are stored in different provenance databases. The support of

multiple experiments, allied with the central node approach, allows a scientific institution

or a research group to concentrate provenance data of multiple experiments into a single

provenance storage.

This approach has several uses in increasing collaboration, such as scientists could

identify similar experiments, i.e., experiments that use the same dataset or the same al-

gorithms; scientists could search the database to identify software pieces that they can

reuse; and also identify implicit collaborations (when one experiment uses another exper-

iment output as input, for example, creating a collaboration even though the scientists

involved do not meet or talk to each other).
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4.2 Approach Implementation

In this section we cover the implementation of our approach. As mentioned in chapter

3, we took advantage of the progress already done in the field and choose noWorkflow

[59, 68] to extend and implement our proposed approach. Since noWorkflow already has

an embedded HTTP application that is used in the visualization tool (Figure 3.3), we

decide to build on top of that application and build Restful APIs [74] to extend it. To

make it easier to switch between the central node and the peer-to-peer operation models,

we decide to use the same code base on the server and the client machines, as well as the

same database structure.

To implement the push and pull operations, we build Restful endpoints on the noWork-

flow HTTP application to return/receive experiment data. We then add new commands

to the noWorkflow command-line interface to interact with the APIs and update the local

provenance store. Since we use Rest APIs, it was a natural decision to use an URL as the

address parameter, which indicates the address of the provenance database.

Although noWorkflow already captures and stores really detailed provenance infor-

mation, and with the multiple experiment support it can represent other aspects of the

experiment, it is not possible to predict all the possible use cases and storage needs. So

we also add the possibility of the scientist adding annotations to the experiment. These

annotations can hold miscellaneous data.

As mentioned in Chapter 3, noWorkflow provenance storage is composed of an SQLite

database, which stores structured provenance data; and a content database, which stores

file contents. Thus, we split the problem in synchronizing these two databases. The

synchronization algorithms are explained in the next subsections. In the Section 4.2.1 we

cover the implementation of the content database synchronization; In Section 4.2.2 we

explain how we do the SQLite database synchronization; In Section 4.2.3 we detail how

we implemented the multiple experiment support described in Section 4.1.3; In Section

4.2.4 we detail the annotation support we added. Finally, in Section 4.2.5 we summarize

our contributions to noWorkflow.

4.2.1 Synchronizing the Content Database

Starting with the content database, we build three API endpoints: list files, get file content

and store files. To implement the push operation, our noWorkflow client application first

calls the list files endpoint and retrieves the hash of all files existing in the server. Then,
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it compares this list with the local storage, identifying which files exist in the local storage

that do not exist in the server. Since noWorkflow uses the hash of the file content as an

identifier, this operation is straightforward. With the list of files that have to be sent

to the server, the noWorkflow client application calls the store file endpoint sending the

files contents to be stored. In Algorithm 1 we illustrate the algorithm used for the push

command.

Algoritmo 1 Push command
Input: url #Url where the noWorkflow instance receiving data is running
textbf#Export Files

serverF ilesHash← httpGet(url +′ /collab/files′)
localF ilesHash← localProvanence.GetF ilesHash
filesToExport← [for id in localFilesHash where id not in serverFilesHash]
fileData← compress(localProvanence.GetF ileData(filesToExport))
httpPost(fileData, url +′ /collab/files′)

#Export Trial data

serverF ilesHash← httpGet(url +′ /collab/files′)
localF ilesHash← localProvanence.GetF ilesHash
filesToExport← [for id in localFilesHash where id not in serverFilesHash]
fileData← compress(localProvanence.GetF ileData(filesToExport))
httpPost(fileData, url +′ /collab/files′)

To implement the pull operation, our noWorkflow client application also calls the list

files endpoint and retrieves all files existing in the server. However, instead of determining

"missing" files on the server, it now looks for files in the server that do not exist in the

local provenance storage. With the list of files that need to be retrieved, it calls the get

file content endpoint to get files contents and then stores them in the local database. In

Algorithm 2 we illustrate the algorithm used for the pull command.

Considering scientific experiments nowadays, we understand that those files could be

large and that this could be a problem. To mitigate that, all endpoints use gzip [26]

compression to minimize network traffic. We understand that, in many cases, this may

not be enough. Thus, improving this in future versions of our tool is on our radar as

future work.

4.2.2 Synchronizing the SQLite Database

To synchronize the SQLite database, the logic is similar but the implementation is more

complex. The noWorkflow SQLite database consists of a relational database with many
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Algoritmo 2 Pull command
Input: url #Url where the noWorkflow instance transmiting data is running
#Import Files

serverF ilesHash← httpGet(url +′ /collab/files′)
localF ilesHash← localProvanence.GetF ilesHash
filesToImport← [for id in serverFilesHash where id not in localFilesHash]
fileData← httpGet(filesToImport, url +′ /collab/files′)
localProvanence.storeF iles(uncompress(fileData))

#Import Trial data

serverTrialsList← httpGet(url +′ /collab/trialsids′)
localTrialList← localProvanence.GetTrialsIds
trialsToImport← [for id in serverTrialsList where id not in localTrialList]
bundle← httpGet(trialsToImport, url +′ /collab/bundle′)
trialData← deserialize(uncompress(bundle))
localProvanence.StoreTrials(trialData)

entities and relationships whose referential integrity must be preserved. To help implement

the commands, we also build three API endpoints: list trials, retrieve trial data and store

trial data. Considering the database is "trial oriented", we use the trial entity as the

starting point of the synchronization process.

The process for implementing the push operation is similar to the one described for the

content database. We determine which trials must be sent to the server and use the store

trial data to save information on the server. Since noWorkflow uses an auto-increment

integer as a trial identifier, it is not easy to identify if a trial on the server is the same

as one in the local storage. One approach could be to compare all trial data (including

child entities data), but this could be very time-consuming. Another critical issue is that

the trial table has a self-reference to identify the "trial parent", which could demand a

prohibitive comparison effort on synchronization. To deal with that, we have modified the

trial table, renaming the trial id to "sequence key" and creating another column as the

trial id where we store an UUID (Universally Unique IDentifier) [47]. We also modified all

other tables with foreign key references to the trial table in order to correctly deal with the

new trial id format. Since noWorkflow uses SQLAchemy as mentioned in Chapter 3, this

modification does not involve SQL commands. Instead, it requires modification on the

Python objects that maps those SQL tables. In addition, we updated the noWorkflow run

command to generate this UUID when it is storing the trial information on the database.

This identifier is unique globally, and we use it on the list trials endpoint and on the

noWorkflow client application to infer trials that must be sent to the server.
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To send trial information to and from the server, we choose to use the JSON (JavaScript

Object Notation) [8] format. The noWorkflow source code already has Python objects to

represent entities, but it is a non-serializable representation of the database tables that is

used by SQLAchemy in database operations. Thus, to be able to transfer data between

client and server applications we created a serializable object representation to each table

that needs to be synchronized that we called a "lightweight object".

The synchronization works as follows. The entities are retrieved from the database

using SQLAchemy in its model object representation. Then, they are converted into its

lightweight representation. We also created the concept of "bundle", which is an object

containing lists for every entity being synchronized. We then send a serialized "bundle"

object, using a very standard serialization process to transform it into the JSON format

and send it in the body of the HTTP request. A sample of the bundle serialized object

is available on Appendix B. When the server receives JSON content, it deserializes it,

converts it into the database object model representation, and then stores it on the server

provenance storage.

All the tables of the noWorkflow’s original database version (illustrated on Figure 3.2)

are synchronized, except for the "graph_cache" and the "tag" tables. The "graph_cache"

is not synchronized for two reasons: it does not have a direct relationship with the trial

table, making almost impossible to identify what has to be synchronized. Additionally,

this table is used for improving the visualization performance and its data is temporary.

The "tag" table was not synchronized because of a design decision. Tags in noWorkflow

are divided into three dot-separated parts that work in a hierarchical fashion. From left

to right, the first part is a sequence that identifies trials with the same content hash of the

script that is being executed (same source code), the second part identifies trials with the

same command line (same parameters), and the last part is a sequence to differentiate

trials with same code and same command. Since in our collaboration extension the

scientists can work offline simultaneously, they can end up with the same tag codes for

different trials, which can generate conflicts when synchronizing. So, we decide to not

synchronize the tag table. Upon import, each trial receives a new tag, which is not

related to the tag in the source database. The new tag is generated by comparing the

hash of the script content and the command executed with the trials in the destination

database. Thus, instead of using the tags to uniquely identify a trial in multiple databases,

the trial id must to be used.

For the pull operation, the noWorkflow client application also calls the list trials end-
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Figure 4.3: Experiment portal screen

point and retrieves all trials existing in the server. But now, it obtains which trials must

be retrieved. Then it calls the retrieve trial data endpoint to get the trials information

and then stores it in the local provenance storage. The processes for comparing trials,

serialization, and deserialization are analogous to the ones we explained for the push

operation.

Since we have the same source code for the noWorkflow client application and the

server, the implementation of the peer-to-peer model uses the same mechanism already

explained. In the peer-to-peer model, the scientist just runs the HTTP application em-

bedded on her machine, and it can assume a server role. The only prerequisite is that the

other scientist is allowed to reach this machine using the HTTP protocol.
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Figure 4.4: Add experiment screen

Figure 4.5: Group management screen

4.2.3 Support to Multiple Experiments

We also extended noWorkflow to create the concept of multiple experiments using a single

provenance storage. We see this as a very important improvement that will allow scien-

tists to easily compare experiments, understand "hidden" relationships between them,

commonly used data, etc. To implement this, we have created a table on the SQLite

database representing the experiment entity, and added a foreign key on the trial table

referring to the experiment.

In addition, we have created a new screen (illustrated in Figure 4.3), which allows

scientists to list existing experiments and its descriptions. We made this screen to be the

home screen of the noWorkflow HTTP application. It is also possible to navigate to the

experiment’s provenance details (same screen illustrated in Figure 3.3) from that screen

by clicking on the URL link of the experiment.

To illustrate the process of creating an experiment, suppose that scientists Alice and

Bob want to start a new experiment that they will conduct together. For simplicity, we

are considering the central node approach here, although an analogous process could be

applied for the peer to peer architecture.

To create a new experiment, Bob clicks on the "Add Experiment" button at the home

screen and fills in the name and description of the experiment (screen illustrated in Figure
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4.4). After confirming the operation Bob is redirected again to the home screen, where the

new experiment is now listed. Notice that at this moment the experiment does not exist

on Bob’s machine – it only exists on the server. To create the experiment on his machine,

Bob has two options. The first option is to copy the URL available in the experiment list

at the home screen and then use it on a pull command. In this case, noWorkflow will

download the empty repository to his machine and he can start working on it. In second

option, since there is no strong link between the local repository and the remote one, he

can also start to work on the experiment in the same way he used to do in the previous

version of noWorkflow, using a command such as now run experiment.py, and then use

the URL only when he wants to sync his work with Alice. Since Bob has already created

the experiment, when Alice enters the portal home screen she can see the experiment

and use the pull command, using the experiment URL as a parameter, to retrieve Bob’s

progress at the experiment. After doing the work she needs, she can also use the push

command, informing the same URL to make her work available to Bob.

The multiple experiment feature can also help with the network traffic problem since

users will often benefit from a file already being on the server because another user in

another experiment has already stored the information there.

As mentioned in Chapter 2, collaboration typically involves resources from multiple

organizations. To allow our approach to support this aspect and be able to manage not

only multiple experiments in the same organization but also into multiple ones, we create

the concept of "groups" in the noWorkflow database. These groups could be used to

represent organizations or even different research groups within the same organization.

The user can navigate to the "Group Information" tab on the home screen, where it is

possible to create and delete groups and members to a group. This screen is illustrated

in Figure 4.5.

4.2.4 Annotation support

Additionally, we add annotation support to noWorkflow. For that, we modified the SQLite

database creating a new table called "extendedAnnotation" where the created annotations

would be stored. Besides the annotation itself, this table stores: a description for that

annotation; the "annotation level" (annotations can be done in different levels, in the

experiment level or in the trial level); the "related trial" or "related experiment", depend-

ing on the annotation level; the "annotation format" (text, JSON, XML, etc.), making it

easier to interpret; and the "annotation type", used to classify the annotation regarding
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Figure 4.6: Manage annotation screen

Figure 4.7: Add annotation screen

the provenance type (Data, Interaction, Visualization, Insight, or Rationale), making it

easier to query and extract the value of the recorded information.

There are two ways of adding an annotation, one of them is using a REST API, the

other one is using the user interface. In the case of the user interface, we added a new

tab, the "Annotation" tab, on the experiment visualization screen where the scientist can

manage the annotations of an experiment. This tab is illustrated in Figure 4.6. Here

the scientist can add new annotations, see annotations already made and download the

annotation content. When the user clicks on add annotation a new screen is shown (Figure

4.7), where the scientist can input relevant data for the new annotation.

Notice that annotations can also be made on the trial level. To manage annotations

on the trial level, the scientist has to click on a particular trial, and on the trial details

she has to click on the "view annotations" option as shown in Figure 4.8. Then, the user

will navigate to the same screen illustrated in Figure 4.6, but now on the trial level.

As previously mentioned, it is not possible to predict all the possible uses for anno-
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Figure 4.8: The new "view annotations" option on trial details. Using that option, the
user can navigate to manage extended annotations within a trial.

tations, but one really interesting use we envision is the possibility to store provenance

from other tools and formats. noWorkflow only captures provenance for python scripts.

Imagine that as a part of the experiment, there is an execution of an external command

in another tool, that also captures provenance information. Now it would be possible

to take that information and store it as an annotation on the same provenance storage,

and since the annotations can be added programmatically through the REST APIs, this

process can be fully automated.

4.2.5 Implementation Summary

On Figure 4.9, we illustrated the SQLite database model after our implementation. The

updates were: the "experiment" table that allows us to have multiple experiments in a

single provenance database; the modification of the trial id column to a UUID, making

it easier to identify trials globally; tables "user", "group", and "memberOfGroup" that

allows to represent the user and also the possibility to group users; the "extendedAnno-
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Figure 4.9: noWorkflow SQlite database model after our implementation. The shadowed
entities represent the tables added by our approach.

tation" table that makes it possible to store annotations in any format (e.g., plain text,

JSON, XML, base64 images, etc) related to an experiment or a trial.

Table 4.1 displays a summary of our implementation on top of noWorkflow.

4.3 Approach Comparison

To compare our approach with existing collaborative provenance models and Script based

systems, we use the provenance model classification (Table 4.2) proposed on Chapter 2

and the taxonomy proposed on the same chapter.

Regarding the provenance model classification, the classification of our noWorkflow

extended version is illustrated on Table 4.2. In this Table, we repeat the models classified

on Chapter 2 to easier the comparison. Regarding the provenance model, our approach

is capable of capturing the data and interaction provenance naturally with its schema. It

also opens up the possibility to register visualization, insight, and rationale provenance
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Table 4.1: Summary of implementation on top of noWorkflow

Implementation Description

Rest APIs

We have built Rest APIs that serves as the basis
for our implementation. These APIs also open up
a new possibility of integration with noWorkflow
and the provenance storage, and can have diverse
uses.

Push command

The push command identifies which data needs to
be sent (either to the server in the central node
approach or to another scientist in the peer-to-peer
model) and sends the necessary data.

Pull command

The pull command identifies which data needs to
be received (either from the server in the central
node approach or from another scientist in the
peer-to-peer model) and downloads the necessary
data.

Multi experiment support

We have created the concept of "experiment" in
the provenance storage, thus allowing to store data
from several experiments in a single database and,
from this, to compare these data and, for example,
identify implicit collaborations.

Annotation support

It opens the possibility to the user to annotate the
experiments or trials, being possible to include a
textual description and even more structured com-
plementary information. For now, there is a limi-
tation that those annotations are not synchronized
with the Pull and Push commands and the recom-
mendation is that they should be made directly on
the central node.

through its extended annotation table. Those extended properties could also be classified

regarding its provenance type making it easier for the future use of these data. It is also

naturally capable of supporting the distribution, multilevel, and collaboration aspects.

Regarding the heterogeneity, the trial structure allows to easily store the evolution of

the experiment, and the annotation capability allows scientists to register supplementary

provenance data almost in any schema collected by other tools.

We also classify our approach as a tool on the collaboration taxonomy proposed on

Chapter 2. On Table 4.3, we repeat the table presented on that chapter but now in-

cluding our approach for comparison purposes. Regarding the experiment phases, our

approach is able to address collaboration on the Composition and Analysis phases. In
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terms of temporality, it uses an asynchronous approach, where each scientist works in-

dependently and chooses when to share information. It uses an Optimistic concurrency

control approach, similar to the VisTrails [33] implementation explained on Chapter 2.

Each execution of the experiment is treated as a trial. Trials are never modified or deleted

(each modification generates a new trial). It also shares the limitation of VisTrails: if two

scientists modify the same experiment before synchronizing it, this generates multiple dis-

joint versions, which can be problematic in terms of composition since the changes could

be complementary. When this occurs, the scientist should "merge" the script manually.

On the sharing aspect, it is possible to share data, models, and also knowledge through

the annotation of the experiment or trials. Finally, on the provenance support, although

the provenance model is able to capture all provenance types, the Visualization, Insight,

and Rationale provenance needs to be registered manually by the users in the form of

annotations.

In the next chapter, we present a case study that uses our extended version of noWork-

flow to show its benefits for a group of scientists.

Table 4.2: Summary of the collaborative provenance models including ou Extended
noWorkflow version

Provenance Model Provenance Types [71] Aspects of Collaboration
D H M C

Extended noWorkflow All*** Yes Yes** Yes Yes
Altintas et al. [1, 2] Data; Interaction No No No Yes
CPM [97] Data; Interaction Yes Evolution Only Yes Yes
Missier et al. [54] Data; Interaction Yes Different schema only No Yes
Confucius [50, 86, 96, 99] All** Yes No Yes Yes
ProvDB [52] All** Yes** Yes** Yes** Yes

* (D) Distribution (H) Heterogeneity (M) Multilevel (C) Collaboration
**Modeled as extended properties
***Visualization, Insight, and Rationale provenance possible through extended properties



4.3 Approach Comparison 51

Table 4.3: Aspects of collaboration in the surveyed approaches including Extended
noWorkflow

Approach Aspects of collaboration
Experiment

Phase
Temporality Concurrency

Control
Sharing Provenance

Support
Extended
noWorkflow

Composition
and Analysis

Asynchronous Optimistic Data,
models and
Knowledge

Data;
Interaction

Confucius
[50, 86, 96, 99]

Composition Asynchronous;
Real Time

Pessimistic Data and
models

Data;
Interaction

myExperiment
[35, 36, 23]

Composition
and Analysis

Asynchronous N/A Data and
models;

Knowledge

Yes**

CAMERA [5, 81] Composition
and Analysis

Asynchronous N/A Data and
models;

Knowledge

Yes**

e-ScienceNet
[16, 14, 15]

Composition Asynchronous N/A Data and
models;

Knowledge

No

Collaborative
PL-Science [62]

Composition
and Analysis

Asynchronous N/A Data and
models;

Knowledge

No

Ellkvist et al.
[29]

Composition Real Time Optimistic Data and
models

Data

VisTrails [33] Composition Asynchronous Optimistic N/A Data
NoCoV [90] Analysis Asynchronous;

Real Time
N/A N/A No

RASA [53] Execution Asynchronous N/A Physical
resources

No

Wood, Wright,
and Brodlie [94]

Analysis Real Time N/A N/A No

ViroLab [12] Composition Asynchronous N/A Data and
models

Yes*

J. Zhang et al.
[97]

Composition Real Time Pessimistic Data and
models

Data;
Interaction

Mostaeen et al.
[58]

Composition N/A Pessimistic N/A No

ProvDB [52] Composition Asynchronous Optimistic Data and
models

Data;
Interaction

Dataverse [46] Composition
and Analysis

Asynchronous N/A Data and
models

Yes**

OpenML [87] Composition
and Analysis

Asynchronous N/A Data and
models

No

CoCalc [17] Composition
and Analysis

Asynchronous;
Real Time

Optimistic Data and
models;

Knowledge

Data;
Interaction

Sumatra [21] Analysis Real Time N/A Data and
models

Data

*No details are provided to correctly classify which provenance types are collected
**Stores data collected by other tools



Chapter 5

Case Study

To illustrate our approach, we build a simulated experiment that aims at (a) showing how

the described approach can capture information and iterations not captured before and

(b) how this data can be used to produce insights about the experiment.

In our case study, we consider a fictitious research institute called "Diseases Research

Institute". This institute has several research groups working in several experiments and

uses the central node collaboration architecture proposed on Chapter 4 to centralize the

provenance data of those experiments. The experiments cited here are also fictitious, so

our focus is on the interactions between the researchers and not on the actual experiment

code or results.

With COVID-19 being a serious problem impacting the whole world, the Diseases

Research Institute conducted multiple types of research on that subject. Among those

experiments, one aims at predicting the numbers of infected people and deaths in a country

over time. We call this experiment COVID deaths prediction. Despite being a fictitious

experiment, methods of predicting deaths from COVID-19 are a real object of research

[91, 40] and that is why we chose this example. COVID deaths prediction is conducted

by several scientists, but since COVID implied in several lockdown practices, many of

that scientists started to work remotely. Conducting this experiment collaboratively in

a serialized manner with many scientists in different locations is nearly impossible, so

much work is done in parallel. But since they are using our proposed approach, they

could consolidate provenance information of the work done in a single provenance storage.

This experiment has 5 scientists involved, and 28 trials summing up the trials of each

scientist. The scientists worked in parallel and used the push and pull commands to

send and retrieve information from the central node server. At the end of the process,
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Figure 5.1: COVID deaths prediction provenance visualization

the provenance data of all of the trials are available at Diseases Research Institute’s

provenance storage and could be queried not only by the researchers involved but also by

anyone authorized by the Institute.

The results of the COVID deaths prediction experiment were published, and its prove-

nance data was accessible to other researchers on the Institute, who used the results to

conduct other experiments. However, the "Diseases Research Institute" ends up finding

out that there is one implementation problem (bug) in the script code used by COVID

deaths prediction. First of all, to avoid that the wrong data could be used in other exper-

iments, the scientists added annotations both at the experiment and at the problematic

trial reporting the problem and warning users of the problem. Now the Institute needs to

discover all other experiments that were already built on top of COVID deaths prediction

and could have their results contaminated by the COVID deaths prediction experiment

problems.

Since researchers use our noWorkflow collaborative extension to run their experi-

ments, the Diseases Research Institute has a centralized database containing interactions

inside an experiment and the implicit collaborations between the experiments. To identify

which experiments are impacted by the COVID deaths prediction, the user entered the
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Figure 5.2: SQL query used to find experiments using a specific file

experiment portal (illustrated in Figure 4.3), navigated to COVID deaths prediction (first

line on the experiment list shown in Figure 4.3), and inspected the outputs of its last

trial (trial 6.1.1 on Figure 5.1). They find out that the experiment generates a file called

"output.csv" with hash code fd2ce99461ab965f372cac31be1f895287fb0414. Then, the user

used the SQL query illustrated in Figure 5.2 to query the provenance database and find

out which experiments used its output.

The Diseases Research Institute ends up finding out that the COVID GDP Impact

experiment was impacted by COVID deaths prediction results. The COVID GDP Impact

is an experiment that aims to predict the GDP impact over time caused by COVID-19

on a country. The researchers of the COVID GDP Impact experiment must be notified,

so the Institute uses the query illustrated in Figure 5.3 to find people involved in the

experiment and notify them. Since the GDP experiment was not publicly published yet,

they could use the new results of COVID deaths prediction and correct their experiment.

Another issue is that the Diseases Research Institute has a strict policy for credit

attribution, thus demanding that even implicit collaborators should receive credit and

be properly registered. To comply with that, the researchers responsible for the COVID

GDP Impact experiment used the query illustrated in Figure 5.4 to find experiments

that implicit collaborates with it. The query identifies that the COVID deaths prediction

experiment is related to the COVID GDP Impact, as expected, but also that the the GDP

Impact of pandemics experiment is related. With the experiment ids, they can use the

query in Figure 5.3, just adjusting the experiment id parameter, to identify collaborators



5 Case Study 55

Figure 5.3: SQL query used to find scientists involved in experiments.

and give them the proper credit.

Using the noWorkflow standard version as a baseline, the first challenge will be even

to conduct the COVID deaths prediction experiment with 5 scientists. Since noWorkflow

standard version does not address collaboration and provenance consolidation between

researchers, they will have to have the discipline to work synchronously, creating a manual

"lock" policy between them and controlling who has the right to work in the experiment

at a given time. They will also have to send the noWorkflow provenance database to the

next one working on the experiment when they finish what they are doing. This could be

done by e-mail for example. Notice that all these controls will have to be made by the

scientists themselves without any support from the system.

The second challenge will be, after the sharing of the experiment data in the Diseases

Research Institute, to find which other experiments could be contaminated by the bug on

the COVID deaths prediction experiment. This could be done by broadcasting a message

to the researchers on the institute communicating the flaw and that the published data

is invalid. However, if every time such an event occurs in the Institute a broadcast
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Figure 5.4: SQL query used to find implicit collaborations

communication is sent, people will probably start to ignore the messages, treating them as

spam. And assuming that a scientist works, on average, in 5 experiments simultaneously,

even if a scientist takes a look at the communication and decides to take action on it to

see if she was impacted, each scientist would have to query 5 provenance databases to get

the answer.

The third challenge will be to discover implicit collaboration with other experiments

in order to give the correct credit attribution. In that case, the user will have to list all

the files used by the experiment and also contact all scientists in the research group to

query their databases and see which trials generated those files. This process will become

so complex and laborious that may cause scientists to trust their memory only, with a

huge possibility of missing someone, which would lead to incomplete information.

All this process is very error-prone and also will demand a lot of extra work, besides

introducing a lot of limits on how scientists conduct their work, definitely impacting their

productivity. Compared to our suggested approach, it is clear that our approach will
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have a huge benefit on researchers’ productivity, saving a lot of time for scientists and

also bringing much more reliable provenance data.



Chapter 6

Conclusion

Collaboration is part of science and scientific research. Although this has been a fact

since centuries ago, we can see that it is still a growing movement nowadays. One of the

catalysts of this has been the advances in computer technology and networks – the same

advances that helped to enable and popularize in silico experiments. Although this is

very positive for science, it brings several challenges. To better understand the challenges

and evaluate the literature on the subject, we made a survey on collaboration in in silico

scientific research. In this survey, we map the provenance models and available tools to

identify the state-of-art of research on collaborative experiments conducted in silico. We

also propose a taxonomy and use it to classify the existing tools and discuss opportunities

based on the gaps we identified. This survey was published in SIGMOD RECORD [44].

This survey provided information on relevant gaps that we could work on. One of

our particular interest was the lack of support to collaboration on Script-based systems.

To validate the relevance of this gap we decided to do a questionnaire with the scientific

community and analyze if the scientists on their daily routines face difficulties dealing

with it. The questionnaire results corroborate the gap identified by the survey so we

decided to work on a collaborative approach to in silico experiments based on scripts.

Aiming to take advantage of the progress already done in Script-based systems, we

implemented our approach on top of noWorkflow. However, the approach itself is generic

and could also be implemented in any other Script-based system. We also classify both

our collaboration-aware provenance model and our tool based on the taxonomy proposed

in Chapter 2

In addition, we conducted a case study using a hypothetical but very feasible situa-

tion. Our case study confirmed our hypothesis that the approach will make it easier to
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collaborate and that a single provenance database for multiple experiments could help

scientists and research institutes in several ways. The main benefits are: to easily allow

collaboration in this kind of experiment; to have a single provenance storage that stores

information about all experiments and all trials of a single experiment, even those run by

different scientists; to find the hidden collaboration between scientists and experiments;

and more reproducible and auditable experiments.

Although we argue that our proposal provides significant improvements in the current

scenario, we understand there are some limitations. First, our questionnaire has a limited

number of respondents, although it corroborates claims of related literature [44, 95, 41].

Second, in silico experiments can produce many data, and transferring these data over

the network and even storing data in a distributed manner could be a problem in some big

data scenarios. Third, the implementation of access control management is still pending.

Fourth, although the possibility of annotating trials and experiments opens new possibili-

ties, we are using it as a wildcard to store some provenance types – the automatic capture

of visualization, insight, and rationale provenance should be studied and addressed.Forth,

our approach does not consider the heterogeneity of the research group and focuses more

on scientists with good computer science skills – this could be a problem in some research

groups. Finally, we use a fictitious case study – although it illustrates a very feasible sce-

nario, we understand that a real collaboration scenario could be very helpful in identifying

additional improvement possibilities for our approach.

As future work, we envision conducting a broad questionnaire with more scientists and

communities that could lead to other insights. We also plan to propose better file storage

and data transfer strategies and implement access control management features since

many pieces of research could involve secrecy. Another possibility we want to explore is to

integrate our approach with distributed provenance collection tools, covering experiments

that run on a distributed infrastructure and are conducted by multiple scientists at the

same time.

We also plan to work on improving the awareness of scientists involved in the ex-

periment/research group. The awareness of these scientists could be improved through

a more proactive behavior, providing information about other scientists’ trials or experi-

ments instead of being passive, and just pulling the information when requested or giving

the collaborative information when queried. Finally, we plan to conduct a validation

experiment with a real use case scenario.
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APPENDIX A -- Questionnaire

To better understand the importance of collaboration on the day-by-day of scientists and

how the existing approaches could be improved, we conducted a questionnaire with mem-

bers of the scientific community. The questionnaire was sent to the following institutions:

LNCC, Fiocruz, USP, CENPES, New York University (NYU), University of Pennsylvania

(UPenn), University of Amsterdam (UVA), Newclastle University, SouthHampton Univer-

sity. It was also sent to researchers of the DATAONE Project. The survey was conducted

100% online, and all responses were anonymous. We end up having 19 respondents, which

give us an initial idea of their reality and the problems they face. The questionnaire has a

total of 15 questions: 6 closed-questions and 9 discursive questions, some questions were

not mandatory and could be left blank by the responder. Table A.1 and Table A.2 present

all the questions and the obtained responses.

The questionnaire was split into two sections: Participant Characterization and Pre-

vious Experience (6 questions), and Collaboration Experience (9 questions). On Section

A.1 and Section A.2 of this appendix we take a deeper on each questionnaire section and

look at the insights that those questions bring.

Figure A.1: Questions (1) and (2) summary of "Participant Characterization and Previous
Experience" Section: (1) What is your education level? (2) How many people scientific
experiments have you ever performed on computational environments?
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Figure A.2: Questions (3) and (6) summary of "Participant Characterization and Previ-
ous Experience" Section: (3) How long have you been running scientific experiments on
computational environments? (6) How many people usually participate in your group of
scientific research?

A.1 Participant Characterization and Previous Expe-
rience

In the first section, the objective is to determine the respondents’ profile, how experienced

they are, which tools they use, and if collaboration is part of their routine activities.

Figure A.1, Figure A.2 and Figure A.3 summarizes the profile of the participants, their

academic experience and how long they have been performing collaborative experiments.

We can conclude, that in general, the respondents are very experienced researchers, since

68.4% has a PhD degree, 78.9% performed more than 10 experiments on computational

environments, and 31.6% have been performing experiments for more than 2 years.

We also tried to understand if the respondents usually conduct experiments in groups

and the size of those groups. As shown by the question "How many people usually par-

Figure A.3: Question (4) summary of "Participant Characterization and Previous Ex-
perience" Section: (4) In which roles have you performed computational experiments?
(multiple answers allowed)
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Figure A.4: Question (5) summary of "Participant Characterization and Previous Expe-
rience" Section: (5) What are your preferred/more often used tools to run experiments?
(select up to 3 tools)

ticipate in your research group?", we can see that the vast majority conduct experiments

in groups and that the groups are typically large (with 4 or more collaborators).

Another aspect covered by this questionnaire section regards which tools scientists

use to run their experiments. The most used tools are programming and script-based

languages (C++, Python, R, Matlab), as shown in Figure A.4. For illustration purposes,

we choose to keep in the Figure the options that participants did not select.

These data show that these scientists typically conduct research in groups and do not

use workflow-based solutions often – they prefer to use programming and script-based

languages.

A.2 Collaboration Experience

Although the absence of proper provenance-aware tooling support for collaboration in

script-based approaches has been identified as a research opportunity [44], a question

arises: is this gap relevant from the scientist’s point of view? This questionnaire section

consists of 9 discursive questions aiming at this question.

The questions of this section comprehend questions 7-15, and we decide to take a

deeper look here in two of the questions: "Do you face any difficulties when performing
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joint research with other members of your research group?" and "Do you face any difficul-

ties when continuing and/or reproducing the work of other researchers?". We collected

the answers and we classified them as "yes" or "no" for quantitative purposes – blank

answers were considered as "no". As shown in Figure A.6, the majority of respondents

face difficulties in collaboration. Moreover, even those answering that do not have prob-

lems with collaboration answered that they face reproducibility problems when trying to

continue or reproduce the work of other scientists in the group.

Figure A.5: Collaboration difficulties.

Figure A.6: Question (9) and (11) summary of "Collaboration Experience" Section: (9)
Do you face any difficulties when performing joint research with other members of your
research group? (11) Do you face any difficulties when continuing and/or reproducing the
work of other researchers?

For the other questions is harder to summarize the obtained feedback, but is possible

to notice that communication and tools to register the work done by the scientist within

the group is a recurrent topic.

Those questionnaire results corroborated the gap identified by the survey we made

(Chapter 2 and [44]) regarding the lack of support to collaboration aspects on Script-based

systems and motivated us to take a deep look at this particular problem.
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Table A.1: Questionnare responses. Questions 1-8

Id What is
your ed-
ucational
level?

How many
scientific

experiments
have you

ever
performed on
computa-
tional

environ-
ments?

How long
have you

been running
scientific

experiments
on computa-

tional
environ-
ments?

In which roles have you
performed computational

experiments? (check all that
apply)

What are
your pre-

ferred/more
often used
tools to run
experiments?
(select up to

3 tools)

How many
people
usually

participate in
your research

group?

How do you get aware
of the work done by
other researchers in

the group?

How can this
experience

be enhanced?

1 PhD
degree

More than 10 More than 12
years

Postdoctoral Researcher SciCumulus,
Swift/T, R

4 people or
more

Collaboration,
reproducible works,

publications

Collaboration
in situ with

expert in those
technologies

2 PhD
degree

More than 10 More than 12
years

Ph.D. Student/Candidate, Research
Institute Researcher

Swift/T,
Python, R

4 people or
more

Through regular group
meetings and

collaboration tools like
mailing lists and Slack.

3 PhD
degree

More than 10 More than 12
years

University Researcher, Principal
Investigator

Matlab,
Python, R

4 people or
more

e-mail, collaborative tools

4 PhD
degree

More than 10 More than 12
years

Master’s Student, Ph.D.
Student/Candidate, Postdoctoral
Researcher, University Researcher

Spark/Python 3 people meetings, presentations a system to
manage the
evolution of
the research

5 Undergra-
duate
degree

More than 10 Between 7 and
12 years

University Researcher, Company
Researcher, Principal Investigator

Python, R,
Spark

4 people or
more

Conferences, articles,
recommendations, etc ...

Greater
integration and

sharing
6 PhD

degree
More than 10 More than 12

years
Undergraduate Student in an

Undergraduate Research, Master’s
Student, Ph.D. Student/Candidate,
Postdoctoral Researcher, University
Researcher, Principal Investigator

Matlab,
Python, C++

4 people or
more

Weekly meetings To keep track
on the versions
of the results

more
frequently

7 Master’s
degree in
progress

1 Less than 1
year

Undergraduate Student in an
Undergraduate Research

C, C++,
Fortran

I develop
scientific
researches
alone.

8 PhD
degree

More than 10 More than 12
years

Undergraduate Student in an
Undergraduate Research,

Undergraduate Student in a Course,
Master’s Student, Ph.D.

Student/Candidate, Postdoctoral
Researcher

Matlab,
Python, C++

4 people or
more

Update-meetings every 15
days

Maybe talking
in English, we
currently talk
in Portuguese.

9 PhD
degree

More than 10 Between 5 and
7 years

Ph.D. Student/Candidate,
Postdoctoral Researcher

R 4 people or
more

In person meetings, video
conferences and e-mail

10 PhD
degree in
progress

More than 10 Between 7 and
12 years

Undergraduate Student in an
Undergraduate Research,

Undergraduate Student in a Course,
Master’s Student, Ph.D.

Student/Candidate

Matlab, C,
C++

3 people Talking, group meetings
etc

I am not sure

11 PhD
degree

More than 10 Between 7 and
12 years

Ph.D. Student/Candidate, Principal
Investigator

Shell script,
C++, Java

3 people email and WhatsApp
exchanges, git push/merge
requests, shared Dropbox
folders, shared Overleaf
projects, shared Trello

cards

We’ve been
considering the
use of Jupyter

12 Master’s
degree

5 to 10 Between 2 and
5 years

Undergraduate Student in an
Undergraduate Research,

Undergraduate Student in a Course,
Master’s Student

Shell script,
C++, Fortran

4 people or
more

We have a meeting per
week

13 PhD
degree

More than 10 Between 7 and
12 years

Undergraduate Student in an
Undergraduate Research,

Undergraduate Student in a Course,
Master’s Student, Ph.D.

Student/Candidate, Postdoctoral
Researcher

Matlab,
Python, C++

I develop
scientific
researches
alone.

14 PhD
degree in
progress

More than 10 Between 5 and
7 years

Undergraduate Student in an
Undergraduate Research, Master’s
Student, Ph.D. Student/Candidate

Python, C++,
Java

4 people or
more

Presentations and
meetings

N/A

15 PhD
degree

1 Between 2 and
5 years

Ph.D. Student/Candidate Ruby I develop
scientific
researches
alone.

16 PhD
degree

More than 10 Between 7 and
12 years

University Researcher WED-flow 4 people or
more

Using systematic review It is not easy
to improve this
work based on
systematic
review

17 PhD
degree

1 Less than 1
year

Postdoctoral Researcher R 4 people or
more

By scientific papers

18 PhD
degree in
progress

More than 10 Between 2 and
5 years

Master’s Student, Ph.D.
Student/Candidate

Python, R,
C++

4 people or
more

Through meetings and
e-mail.

We could have
a tool that

helps our com-
munications
and sharing of

our
experiments

19 PhD
degree

More than 10 Between 5 and
7 years

Undergraduate Student in an
Undergraduate Research,

Undergraduate Student in a Course,
Master’s Student, Ph.D.

Student/Candidate, Postdoctoral
Researcher

Python, Shell
script, C++

4 people or
more

Throughout meetings Improving the
use of

specialized
computer tools
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Table A.2: Questionnare responses. Questions 8-15

Id Do you face any
difficulties when
performing joint
research with
other members
of your research

group?

How can this
experience be
enhanced?

Do you face any
difficulties when
continuing and/or
reproducing the
work of other
researchers?

How can this
experience be
enhanced?

Do your
colleagues
face any
difficulties

when
continuing
and/or

reproducing
the work

done by you?

How can this
experience

be enhanced?

How do you think your
collaboration

experience could be
improved?

1 Always a challenge Medium Medium
2 Sometimes

computer scientists
want to test

hypotheses that
are not of interest

to domain
scientists and
conversely.

Yes, instructions to
execute a

computational
activity often don’t
work due to, for
instance, version

changes.

Maybe with better
computational
environment
preservation

techniques such as
virtualization.

We usually
adopt

provenance
management
systems but

this is
sometimes not

enough.

A more
detailed

provenance
trace and
better

execution
environment
preservation.

Maybe having every
participant to agree on
adopting FAIR data
guidelines and good

practices for
reproducibility.

3 Yes Yes No
4 yes use of

communication tools
whenever a problem

is raised

yes Integration of
problem evolution
and corresponding

code

probably improve
documentation

dive more clearer the
responsibilities and duties
and be able to track them
in the experiment being

developed
5 No No No More sharing opportunity
6 Not much,

considering the
time limitations.

To employ more
visualization tools

Not frequently, when
the records are ok.

To keep records ok
regarding previous

researches.

I don´t know. I am not sure With an environment that
would lead us to keep
track and records of the
experiments in a more

productive way.
7
8 I do, I am not

Brazilian, there is
a lack of inclusion
in my lab. Both
Brazilians and

foreigners tend to
create

non-inclusive
groups.

Promoting
non-research

activities and to
include both
Brazilians and
foreigners.

Sometimes Usually, I face
math-related

problems, I mean,
bad math definitions

in manuscripts.

I do not have
feedback about
it. But I think

they do.

Talking with
me, I always

open to discuss
research topics.
Especially if I
am involved.

We need to improve our
math skills, English, and

cultural isolation.

9 Achieving
deadlines

Yes By sharing code and
data

Yes Training Yes

10 Not at all It depents on how
well it was

documented and on
the materials and
methods made
available by the

authors

I dont think so,
most of the

time I
document it in
an easy way to
be reproduced

11 Yes, mostly on
terminology and
fundamental

concepts (I work
on a

multidisciplinary
group)

I don’t know, apart
from learning (hard!)
the terminology of

others!

Always! Not sure. Jupyter
and org-mode might
alleviate, but not
solve the problem

Yes, even
though I try
hard to help

them!

I don’t know,
honestly

As I said, we’ve been
considering the use of

Jupyter, but it’s not clear
to any of us whether it

will really help

12 None so far A few I don’t think
they tried

reproduce my
work yet

13
14 Yes N/A Yes N/A Yes N/A Yes
15
16 No difficulties It is not necessary. Yes We try to do this

using open software
and open data
approaches

Yes, I have face
some

difficulties.

I am using the
same solution
for reproducing
processes open
software and
open data.

improving the interaction
with others researchers
and with conference and

journal forums.

17 No Sometimes Sometimes
18 Yes.

Communication
issues.

We could have a tool
that helps our

communications and
sharing of our
experiments

Sometimes. Not that I
know.

My collaboration
experience could be

improved if we used a tool
where it would be easy to
register and communicate
about our work set and
experiment results.

19 Yes. Difficulty in
expressing clearly a
discussion topic

Increasing the use of
practical

collaboration
activities during

school

Yes Improving the
details / clarifying
discussion given in

their work

I do not know – Yes
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APPENDIX B -- Example of Bundle Serialized Object

Following there is an example of the "bundle" object serialized as a JSON. This object

is used in the process of synchronizing the SQLite database between the machine acting

as the server and the client machine. In this example, there is only one trial (the trial of

id: "64872e6d-fbf9-4f26-9ac4-2f8d1da5199b") being synchronized, with all of its related

entities. Note that since noWorkflow captures provenance in a fine-grained way, this

JSON could be very large, so to save space we "cut" the lists to a max of 2 elements in

this example.

1 {

2 ’trials ’: [{

3 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

4 ’id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

5 ’script ’: ’teste_arquivo.py’,

6 ’start ’: ’2021-10-10 20:17:02.630142 ’ ,

7 ’finish ’: ’2021-10-10 20:17:02.812370 ’ ,

8 ’command ’: ’run teste_arquivo.py ’,

9 ’path ’: ’C:\\ Users\\ eduar \\ noWorkflowSamples \\ testefile -

Copia ’,

10 ’status ’: ’finished ’,

11 ’modules_inherited_from_trial_id ’: None ,

12 ’parent_id ’: None ,

13 ’main_id ’: 1

14 }

15 ],

16 ’activations ’: [{

17 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

18 ’id ’: 1,

19 ’name ’: ’__main__ ’,

20 ’start_checkpoint ’: 0.12187930000000002 ,

21 ’code_block_id ’: 1

22 }, {
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23 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

24 ’id ’: 2,

25 ’name ’: ’open ’,

26 ’start_checkpoint ’: 0.12190689999999998 ,

27 ’code_block_id ’: -1

28 }, ...

29 ],

30 ’arguments ’: [{

31 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

32 ’id ’: 1,

33 ’name ’: ’script ’,

34 ’value ’: "’C:\\\\ Users \\\\ eduar \\\\ noWorkflowSamples \\\\

testefile - Copia \\\\ teste_arquivo.py’"

35 }, {

36 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

37 ’id ’: 2,

38 ’name ’: ’bypass_modules ’,

39 ’value ’: ’False ’

40 }, ...

41 ],

42 ’codeBlocks ’: [{

43 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

44 ’id ’: 1,

45 ’code ’: ’ca8f435ec508ed2b123c4317b77084c83582a544 ’,

46 ’code_hash ’: ’ca8f435ec508ed2b123c4317b77084c83582a544 ’,

47 ’docstring ’: ’’

48 }

49 ],

50 ’codeComponents ’: [{

51 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

52 ’id ’: 1,

53 ’name ’: ’teste_arquivo.py’,

54 ’type ’: ’script ’,

55 ’mode ’: ’w’,

56 ’first_char_line ’: 1,

57 ’first_char_column ’: 0,

58 ’last_char_line ’: 7,

59 ’last_char_column ’: 7,

60 ’container_id ’: -1

61 }, {

62 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

63 ’id ’: 2,

64 ’name ’: ’import os ’,
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65 ’type ’: ’import ’,

66 ’mode ’: ’n’,

67 ’first_char_line ’: 1,

68 ’first_char_column ’: 0,

69 ’last_char_line ’: 1,

70 ’last_char_column ’: 1,

71 ’container_id ’: 1

72 }, ...

73 ],

74 ’compositions ’: [{

75 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

76 ’id ’: 1,

77 ’part_id ’: 3,

78 ’whole_id ’: 2,

79 ’type ’: ’*op_pos ’,

80 ’position ’: 0,

81 ’extra ’: None

82 }, {

83 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

84 ’id ’: 2,

85 ’part_id ’: 2,

86 ’whole_id ’: 1,

87 ’type ’: ’*body ’,

88 ’position ’: 0,

89 ’extra ’: None

90 }, ...

91 ],

92 ’dependencies ’: [{

93 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

94 ’id ’: 1,

95 ’dependent_activation_id ’: 1,

96 ’dependent_id ’: 2,

97 ’dependency_activation_id ’: 1,

98 ’dependency_id ’: 3,

99 ’type ’: ’argument ’,

100 ’reference ’: False ,

101 ’collection_activation_id ’: None ,

102 ’collection_id ’: None ,

103 ’key ’: None

104 }, {

105 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

106 ’id ’: 2,

107 ’dependent_activation_id ’: 1,
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108 ’dependent_id ’: 2,

109 ’dependency_activation_id ’: 1,

110 ’dependency_id ’: 6,

111 ’type ’: ’argument ’,

112 ’reference ’: False ,

113 ’collection_activation_id ’: None ,

114 ’collection_id ’: None ,

115 ’key ’: None

116 }, ...

117 ],

118 ’environmentAttrs ’: [{

119 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

120 ’id ’: 1,

121 ’name ’: ’OS_NAME ’,

122 ’value ’: ’Windows ’

123 }, {

124 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

125 ’id ’: 2,

126 ’name ’: ’OS_NAME ’,

127 ’value ’: ’Windows ’

128 }, ...

129 ],

130 ’evaluations ’: [{

131 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

132 ’id ’: 1,

133 ’code_component_id ’: 1,

134 ’activation_id ’: 0,

135 ’checkpoint ’: 0.12409520000000002 ,

136 ’repr ’: "<module ’__main__ ’ from ’C:\\\\ Users \\\\ eduar \\\\

noWorkflowSamples \\\\ testefile - Copia \\\\ teste_arquivo.

py’>"

137 }, {

138 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

139 ’id ’: 2,

140 ’code_component_id ’: 7,

141 ’activation_id ’: 1,

142 ’checkpoint ’: 0.123029 ,

143 ’repr ’: "<_io.TextIOWrapper name=’teste34 ’ mode=’w+’

encoding=’cp1252 ’>"

144 }, ...

145 ],

146 ’fileAccesses ’: [{

147 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,
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148 ’id ’: 1,

149 ’name ’: ’teste34 ’,

150 ’mode ’: ’w+’,

151 ’buffering ’: ’default ’,

152 ’content_hash_before ’: ’

e7515ea57031994f29dbde1b213ce439ab588aa9 ’,

153 ’content_hash_after ’: ’

da39a3ee5e6b4b0d3255bfef95601890afd80709 ’,

154 ’checkpoint ’: 0.12197859999999999 ,

155 ’activation_id ’: 2

156 }

157 ],

158 ’members ’: [{

159 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

160 ’id ’: 1,

161 ’collection_activation_id ’: 0,

162 ’collection_id ’: 5,

163 ’member_activation_id ’: 0,

164 ’member_id ’: 5,

165 ’key ’: ’.__class__ ’,

166 ’checkpoint ’: 0.12192010000000003 ,

167 ’type ’: ’Put ’

168 }, {

169 ’trial_id ’: ’64872e6d -fbf9 -4f26 -9ac4 -2 f8d1da5199b ’,

170 ’id ’: 2,

171 ’collection_activation_id ’: 0,

172 ’collection_id ’: 4,

173 ’member_activation_id ’: 0,

174 ’member_id ’: 5,

175 ’key ’: ’.__class__ ’,

176 ’checkpoint ’: 0.12192010000000003 ,

177 ’type ’: ’Put ’

178 }, ...

179 ],

180 ’modules ’: [],

181 ’users ’ : []

182 }
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